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Preface

This teaching material contains lecture notes of a one semester course on ”Categorical Data
Analysis - Stat 3062” based on the newly harmonized undergraduate statistics curriculum.
In order to comply with the goal of the course, in each chapter, it starts with a general
introduction to the topics and their applications in different areas.

It is not only intended to statistics students but also other department students and re-
searchers who need to work on applied categorical data analysis. Therefore, every reader
is supposed to understand the statistical analysis and models presented in these lecture
notes, and know how and when to use them.

This teaching material will never achieve a final version since it is under constant review,
and subject to changes and extensions. Therefore, comments and suggestions are always
welcome.

iv



Chapter 1

Introduction

1.1 Objective and Learning Outcomes

An important consideration in determining the appropriate analysis of categorical variables
is the scale of measurement and their distributions. Hence, the objective of this chapter
is to review variable classifications, common discrete probability distributions and signifi-
cance tests for a binomial proportion.

Upon completion of this chapter, students are expected to:

• Differentiate the different types of categorical variables and understand their corre-
sponding probability distributions.

• Know the three major large sample inferential methods (Wald, Score and Likelihood-
ratio tests).

• Determine exact p-values and exact confidence intervals for small sample inferences.

1.2 Categorical Response Data

1.2.1 Categorical versus Continuous Variables

A categorical variable is a variable that can take on one of a limited, and usually fixed,
number of possible values. That is, it has a measurement scale consisting of a set of cate-
gories. Such scales occur frequently in the health sciences (e.g., whether a patient survives
an operation: yes, no), social sciences (for measuring attitudes and opinions), behavioral
sciences (example, diagnosis of type of mental illness: schizophrenia, depression, neurosis),
public health (example, whether awareness of AIDS has led to increased use of condoms:
yes, no), zoology (example, alligators’ primary food choice: fish, invertebrate, reptile),
education (example, examination result: pass, fail) and marketing (example, consumers’
preference among brands of a product: Brand A, Brand B, Brand C). They even are perva-
sive in highly quantitative fields such as engineering sciences and industrial quality control,

1
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when items are classified according to whether or not they conform to certain standards.

There are two common kinds of categorical variables: nominal and ordinal. The first kind,
nominal variables, have a set of mutually exclusive categories which cannot be ordered.
The number of occurrences in each category is referred to as the frequency (count) for
that category. When nominal variables have two categories, they are termed as binary (di-
chotomous). For example, gender (male or female) and patient outcomes (dead or alive)
are binary variables. A nominal variable which has multiple categories, is referred to a
multinomial(polytomous) variable. For example, blood type (A, B, AB or O), teaching
method (lecturing, using slides, discussion or other), favorite Ethiopian music (tizita, am-
basel, anchihoye or bati), marital status (single, married, widowed, divorced), preference
of soft drink (coca, fanta, sprite, pepsi, mirinda or 7up) and party affiliation (Republican,
Democrat, Independent) are all multinomial variables.

The second kind of variables, ordinal variables, are where the categories are ordered. For
example, clinical stage of a disease (none, mild or severe) and academic qualifications (BSc,
MSc or PhD) are ordinal variables. Note that quantitative variables grouped into a small
number of categories (example, Age < 18, 18−24, 25−34 and ≥ 35 years) are ordinal too.
Ordinal variables generally indicate that some subjects are better than others but then,
we can not say by how much better, because the intervals between categories are not equal.

In addition to nominal or ordinal variables, categorical data also consists of variables with
a finite number of discrete values (really, a small number of discrete values). That is,
categorical data may arise in a form of simple counts, for example, number of children in
a family, CD4 counts in an HIV/AIDS patient, · · · .

It must be noted that the distinction between continuous and discrete variables is the num-
ber of values they can take. Therefore, since continuous variables can take lots of values,
they cannot be considered as categorical.

The reason for distinguishing between variables is that the method of data analysis depends
on the scale of measurement and their distribution. Methods designed for ordinal variables
cannot be used with nominal variables. Though ordinal variables are qualitative, they
are treated in a quantitative manner in a statistical analysis by assigning ordered scores
to the categories. Thus, methods designed for ordinal variables utilize the order of the
category (low to high or high to low) unlike methods designed for nominal variables. On
the contrary, methods designed for nominal variables can be used with ordinal variables
as nominal variables are lower in the measurement scale. Since the methods designed for
nominal variables do not use the order of the categories, it can result serious loss of power
(Agresti, 2007, 2002). Hence, it is a must to apply appropriate methods for the actual
scale.

2
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1.2.2 Response versus Explanatory Variables

Based on the role of variables in a statistical analysis, variables can be classified as depen-
dent and independent variables.

• A dependent variable is a variable, that is, of primary interest to be determined as an
outcome. For example, the outcome of a certain treatment or the educational achieve-
ment level can be considered dependent variables. The terms outcome, response and
dependent are used interchangeably.

• An independent variable is a variable to be used to determine the value of the de-
pendent variable. It is also called a factor, an exposure, a predictor or a covariate.

There are two types of independent variables: attribute (measured) and active (ma-
nipulated) variables.

– An attribute independent variable is a variable whose values are preexisting
characteristics of objects under study. The values of such a variable cannot
be systematically changed or manipulated. For example, education, sex, socio-
economic status, · · · .

– An active independent variable can be experimentally manipulated. Such an
independent variable is a necessary (but not sufficient) condition to make cause-
and-effect conclusions. For example, a researcher might investigate a new kind of
therapy compared to the traditional treatment (the treatment group each person
is assigned to). A second example could be a design to evaluate the effect of
different fertilizers on crop yields. A third example might be to study the effect
of a new teaching method, such as cooperative learning, on student performance.
Studies with active independent variables are experimental studies.

Even though a statistical analysis does not differentiate whether an independent
variable is an attribute or active, there is a crucial difference in interpretation. For
scientific researches in applied disciplines, the need to demonstrate that a given in-
tervention or treatment causes change in behaviour or performance is extremely im-
portant. Only the approaches that have an active independent variable can allow one
to infer that the change (difference) in the independent variable caused the change
(difference) in the dependent variable. In contrast, a significant difference between or
among persons with different values of an attribute independent variable should not
lead one to conclude that the attribute independent variable caused the dependent
variable to change.

Based on the type and role of variables, the common statistical methods are listed in the
following table.

3
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Dependent Variable Independent Variable Method
Continuous Binary t test
Continuous Multinomial ANOVA
Continuous Continuous Correlation
Continuous Quantitative/Categorical/Both Linear Regression
Categorical Categorical χ2 test
Binary Quantitative/Categorical/Both Binary Logistic Regression
Multinomial Quantitative/Categorical/Both Multinomial Logistic Regression
Ordinal Quantitative/Categorical/Both Ordinal Logistic Regression
Discrete Quantitative/Categorical/Both Poisson Regression
Time-to-event Quantitative/Categorical/Both Survival Models

Note: For correlation and χ2 test, there is no need to differentiate variables as dependent
and independent.

The subject of this course is the analysis of categorical response variables. It is mainly
concerned with those statistical methods which are relevant when there is just one cate-
gorical response variable. There can be several explanatory variables which may be either
quantitative, categorical or both.

1.3 Probability Distributions for Categorical Data

Inferential statistical analysis requires assumptions about the probability distribution of the
response variable. For regression models and analysis of variance, the continuous response
variable is assumed to follow normal distribution. For a categorical response, there are
three common distributions; binomial, multinomial and poisson.

1.3.1 The Binomial Distribution

A binomial distribution is one of the most frequently used discrete distribution which is
very useful in many practical situations involving only two types of outcomes.

Recall that a Bernoulli trial is a trial with only two mutually exclusive and exhaustive out-
comes (outcomes that can be reduced to two) which are labeled as ”success” and ”failure”.
Let Y denote the number of successes out of n Bernoulli trials.

Outcome
Success Failure Total

Frequency y n− y n
Probability π 1− π 1

Under the assumption of independent and identical trials, Y has the binomial distribution
with the number of trials n and probability of success π, Y ∼ Bin(n, π). Therefore, the

4
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probability of y successes out of the n trials is:

P (Y = y) =

(
n

y

)
πy(1− π)n−y, y = 0, 1, 2, · · · , n

The mean µ and variance σ2 of the number of successes are E(Y ) = µ = nπ and
V (Y ) = σ2 = nπ(1− π), respectively.

The binomial distribution is always symmetric when π = 0.50. For fixed n, it becomes
more skewed as π moves toward 0 or 1. Specifically, the distribution is right-skewed when
π < 0.5 and it is left-skewed when π > 0.5.

For fixed π, it becomes more symmetric as n increases. When n is large, it can be approx-
imated by a normal distribution with µ = nπ and σ2 = nπ(1 − π). A guideline is that
the expected number of both outcomes, nπ and n(1 − π), should both be at least 5. For
π = 0.50, it requires only n ≥ 10. For π = 0.10 (or π = 0.90), it requires n ≥ 50. When π
gets nearer to 0 or 1, larger samples are needed to attain normality.

1.3.2 The Multinomial Distribution

The multinomial distribution is an extension of binomial distribution. In this case, each
trial has more than two mutually exclusive and exhaustive outcomes. Similar to Bernoulli
trials, the trials are independent with the same category probabilities.

Let J denote the number of outcomes in a multinomial experiment and let Yi; i =
1, 2, · · · , J denote the number of times that the ith outcome occurs among n trials. Let
πi; i = 1, 2, · · · , J be the probability that the ith outcome occurs on any trial, where
π1 + π2 + · · ·+ πJ = 1.

Outcome Categories
1 2 · · · j · · · J Total

Frequency n1 n2 · · · nj · · · nJ n
Probability π1 π2 · · · πj · · · πJ 1

Thus, (Y1, Y2, · · · , YJ) has a multinomial distribution with parameters n; π1, π2, · · · , πJ and
write as (Y1, Y2, · · · , YJ) ∼Multi(n; π1, π2, · · · , πJ). Therefore, the probability of observing
n1 outcome 1’s, n2 outcome 2’s, · · · , nJ outcome J ’s among the n multinomial trials is:

P (Y1 = n1, Y2 = n2, · · · , YJ = nJ) =
n!

n1!n2! · · ·nJ !
πn1

1 πn2
2 · · · π

nJ
J =

n!
J∏
i=1

ni!

J∏
i=1

πni
i

where n1+n2+· · ·+nJ = n. For outcome j, Yj ∼ Bin(nj, πj) with mean E(Yj) = µj = nπj
and variance V (Yj) = σ2

j = nπj(1−πj). Also, if J = 2, the multinomial distribution reduces
to binomial distribution, (Y1, Y2) ∼Multi(n; π1, π2).

5
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1.3.3 The Poisson Distribution

Poisson distribution is another theoretical discrete probability distribution, which is useful
for modeling the number of successes in a certain time, space, · · · . It differs from binomial
distribution in the sense that it is not possible to count the number of failures even though
the number of successes is known. For example, in the case of patients coming to hospital
for emergency treatment, only the number of patients arriving in a given hour is known
but it is not possible to count the number of patients not coming for emergency treatment
in that hour.

Accordingly, it is not possible to determine the number of trials ( total number of outcomes
- successes and failures) and hence binomial distribution cannot be applied as a decision
making tool. In such situation the poisson distribution should be used given the average
number of successes.

Let Y be the number of successes in a specific time or space. Its probabilities depend on
a single parameter, µ which is the average number of successes in a certain time or space.
Thus, Y ∼ Poisson(µ). The probability of y successes in that specific time or space is:

P (Y = y) =
e−µµy

y!
, y = 0, 1, 2, · · ·

A key feature of the Poisson distribution is that its variance equals its mean, i.e., E(Y ) =
µ = Var(Y ). The counts vary more when their mean is higher. Also the distribution
approaches normality as µ increases and it approximates binomial if n is large and π is
small, with µ = nπ.

1.4 Statistical Inference for a Proportion π

Recall a binary variable is a variable having only two categories, for example: patient out-
come (cured or dead), development of cancer (yes or no). One of the categories is labeled
as success and the other as failure. Mostly, the success outcome is coded by 1 and the
failure is coded by 0.

The probability of a success is denoted by π and the probability of a failure is denoted by
1 − π. Then the probability distribution for the number of successes y in n independent
and identical trials, is:

P (Y = y) =

(
n

y

)
πy(1− π)n−y; y = 0, 1, 2, · · · , n.

Recall the mean and variance of the number of successes y are nπ and nπ(1− π), respec-
tively. If both the expected number of outcomes are at least 5, then a normal distribution
with mean nπ and variance nπ(1− π) can be used as an approximation for the binomial.

6
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If Y ∼ Bin(n, π), then Y ∼ N (nπ, nπ(1 − π)). The approximation becomes more precise
for large n.

In a random sample of n from a population, if there are y successes, then the sample pro-
portion of successes is p = y

n
(alternatively, it can be denoted by π̂). The point estimator

of the binomial parameter π is the sample proportion of successes p (p estimates π). The
mean of the sampling distribution of a sample proportion p is E(p) = µp = π. Also, the
variance of the sample proportion of successes is V (p) = σ2

p = π(1−π)/n. Hence, for large
sample size, the sampling distribution of a sample proportion is normal with mean π and
variance π(1− π)/n. That is, p ∼ N [π, π(1− π)/n].

Therefore, the standard error of the sample proportion p is SE(p) = σp =
√
π(1− π)/n.

Consequently, the estimated standard error of the sample proportion p is ŜE(p) = σ̂p =√
p(1− p)/n.

1.4.1 Maximum Likelihood Estimation

A likelihood function is the probability of the observed data, expressed as a function of the
parameter. For a binomial distribution, with y = 0 successes in n = 5 trials, the likelihood
function is `(π) = (1−π)5 which is defined for π between 0 and 1. If π = 0.60 for instance,
the probability that y = 0 is `(0.60) = (1 − 0.60)5 = 0.0102. Likewise, if π = 0.40 then
`(0.40) = (1 − 0.40)5 = 0.0778, if π = 0.20 then `(0.20) = (1 − 0.20)5 = 0.3277 and if
π = 0.0 then `(0.0) = (1− 0.0)5 = 1.0.

The maximum likelihood estimate of a parameter is a value at which the likelihood func-
tion is maximized. Consider the previous example, the likelihood function `(π) = (1− π)5

is maximized at π = 0.0. Thus, when n = 5 trials have y = 0 successes, the maximum
likelihood estimate of π equals 0.0. This means that the result y = 0 in n = 5 trials is
more likely to occur when π = 0.00 than when π equals any other value.

In general, for the binomial outcome of y successes in n trials, the maximum likelihood
estimate of π is π̂ = p = y/n. This is the sample proportion of successes for n trials. For
observing y = 3 successes in n = 5 trials, the maximum likelihood estimate of π equals
p = 3/5 = 0.60. The result y = 3 in n = 5 trials is more likely to occur when π = 0.60
than when π equals any other value.

The expected value of the sample proportion p is E(p) = π and its variance is σ2(p) =
π(1− π)/n.

• Since E(p) = π, p is an unbiased estimator of π. But unbiasedness is not true for all
ML estimators.

• As the number of trials n increases, σ2(p) decreases toward zero; that is, the sample

7
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proportion tends to be closer to the population proportion π. Thus, the estimator p
is consistent. Consistency is true for all ML estimators.

• For large n, the sampling distribution of p is approximately normal, that is, p ∼
N [π, π(1 − π)/n]. This large sample inferential method is also true for all ML esti-
mators.

1.4.2 Wald, Score and Likelihood-Ratio Tests

The interest here is whether the population proportion of success π takes a particular value,
say π0.

The Wald Test

The Wald test uses the sample proportion p for estimating the standard error of the sample
proportion p. That is, the estimated standard error is ŜE(p) = σ̂p =

√
p(1− p)/n.

Step 1: State both the null and alternative hypotheses. There three options are:

Option 1: H0 : π = π0 vs H1 : π 6= π0

Option 2: H0 : π = π0 vs H1 : π < π0

Option 3: H0 : π = π0 vs H1 : π > π0

Step 2: Specify the level of significance α and obtain the critical value. The critical value
is zα/2 for a two sided test and zα for a one sided test.

Step 3: The Wald test statistic defined as:

Z =
p− π√
p(1− p)/n

∼ N (0, 1).

Step 4: Decision: H0 can be rejected if |zcal| > zcrt or p-value< α.

Step 5: Conclusion.

Example 1.1. Of 1464 HIV/AIDS patients under HAART treatment in Jimma Univer-
sity Specialized Hospital from 2007-2011, 331 defaulted. Did the proportion of defaulter
patients different from one fourth?

Solution: Let π denote the proportion of defaulter patients. The sample proportion of
defaulters is p = 331

1464
= 0.226. For a sample of size n = 1464, the estimated standard error

of p is ŜE(P ) =
√

0.226(1− 0.226)/1464 = 0.011.

Step 1: Hypothesis:
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H0 : π = 0.25 The proportion of defaulter patients is not significantly different from
25%.

H1 : π 6= 0.25 The proportion of defaulter patients is significantly different from 25%.

Step 2: Assuming α = 0.05, the critical value is z0.025 = 1.96

Step 3: The calculated value of the Wald test statistic is:

z =
p− π√
p(1− p)/n

=
0.226− 0.25√

0.226(1− 0.226)/1464
= −2.18

Step 4: Decision: Since |z| = 2.18 > 1.96, H0 can be rejected. Or it is easy to find
the two-sided p-value which is the probability that the absolute value of a standard
normal variate exceeds 2.18, that is, p−value = 2P (Z > 2.18) = 2(0.0146) = 0.0292.

Step 5: Conclusion: Since, the one-sided p-value is 0.0146, there is a strong evidence that,
π < 0.25, that is, the proportion of defaulter patients is fewer than a quarter at 5%
level of significance.

The Score Test

The Score test is an alternative possible test which uses a known standard error. This
known standard error is obtained by substituting the assumed value under the null hy-
pothesis π0. That is, σ̂P =

√
π0(1− π0)/n. Hence, the Score test statistic for a binomial

proportion is:

Z =
P − π√

π0(1− π0)/n
∼ N (0, 1).

Example 1.2. Recall example 1.1. Test the hypothesis using the Score test.

Solution: Let π denote the proportion of defaulter patients. The sample proportion
of defaulters is p = 331

1464
= 0.226. For Score test, the known standard error of P is

ŜE(P ) =
√

0.25(1− 0.25)/1464 = 0.0113.

Step 1: Hypothesis:

H0 : π = 0.25 The proportion of defaulter patients is not significantly different from
25%.

H1 : π 6= 0.25 The proportion of defaulter patients is significantly different from 25%.

Step 2: Assuming α = 0.05, the critical value is z0.025 = 1.96

Step 3: The calculated value of the Score test statistic is:

z =
p− π√

π0(1− π0)/n
=

0.226− 0.25√
0.25(1− 0.25)/1464

= −2.12
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Step 4: Decision: Since |z| = 2.12 > 1.96, H0 should be rejected. Also, the two-sided
p-value is 2P (Z > 2.12) = 2(0.0170) = 0.034 which leads to the rejection of H0.

Step 5: Conclusion: There is a strong evidence that, π < 0.25, that is, the proportion of
defaulter patients is fewer than a quarter at 5% level of significance..

The Likelihood-Ratio Test

The likelihood-ratio test is based on the ratio of two maximizations of the likelihood func-
tion. The first is the maximized value of the likelihood function over the possible parameter
value(s) that the parameter assumes under the null hypothesis. The second is the maxi-
mized value of the likelihood function among all possible parameter values, permitting the
null or the alternative hypothesis to be true.

Let `0 denote the maximized value of the likelihood function under the null hypothesis,
and let `1 denote the maximized value in general. Note that `1 is always at least as large
as `0.

For a binomial proportion, `0 = `(π0) and `1 = `(p). Thus, the likelihood-ratio test statistic
is

G2 = −2 log(`0/`1) = −2(log `0 − log `1) ∼ χ2(1).

Note that G2 ≥ 0. If `0 and `1 are approximately equal, then G2 will approach to 0. This
indicates that there is no sufficient evidence to reject H0 (in favor of H0). If `0 is by far
less than `1, then G2 will be very large indicating a strong evidence against H0.

Likelihood-ratio CI: The (1−α)100% likelihood-ratio confidence interval is obtained by
solving −2 log(`0/`1) ≤ χ2

α(1) for π0.

Example 1.3. Recall example 1.6. Test H0 : π = 0.50 using likelihood-ratio and construct
its confidence interval.

Solution: Since n = 16 and y = 0, the Binomial likelihood function is ` = `(π) = (1−π)16.
Under H0 : π = 0.50, the binomial probability of the observed result of y = 0 successes is
`0 = `(0.5) = 0.516. The likelihood-ratio test compares this to the value of the likelihood
function at the ML estimate of p = 0, which is, `1 = `(0) = 1. Thus, the likelihood-
ratio test statistic is G2 = −2 log(0.5016) = −32 log(0.50) = 22.18. Since G2 = 22.18 >
χ2

0.05(1) = 3.84, H0 should be rejected.

1.4.3 Interval Estimation

Wald CI: The (1− α)100% (Wald) confidence interval for the population proportion π is
given by: [

p± zα/2

√
p(1− p)

n

]
.
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This is a large sample confidence interval for the population proportion π which uses the
sample proportion p as the mid-point of the interval.

Example 1.4. Recall example 1.1. Construct the 95% CI for the population proportion
of HIV/AIDS patients who were defaulted.

Solution: For n = 1464 observations, p = 0.226. And zα/2 = z0.025 = 1.96. The 95%

confidence interval is [0.226± 1.960.226(1−0.226)
1464

] = (0.204, 0.248). Therefore, the proportion
of HIV/AIDS patients who were defaulted is between 0.204 and 0.248 at 0.05 level of sig-
nificance.

Note: The Wald confidence interval for π is based on a normal approximation to the
binomial distribution. The rule is that both nπ and nπ(1−π) should be at least 5. Unless
π is close to 0.50, it does not work well if n is not very large. That is, it works poorly to
use the sample proportion as the mid-point of the confidence interval when π is near 0 or 1.

Score CI: The Score confidence interval uses a duality with significance tests. It is con-
structed by inverting results of a significance test using the null standard error. This
confidence interval consists of all values π0’s for the null hypothesis parameter that are
’not rejected’ at a given significance level.

For a binomial proportion, given n and p with a critical value ±zα/2, the π0 solutions for
the equation

|p− π0|√
π0(1− π0)/n

= ±zα/2

are the end points of the Score confidence interval for π. Squaring both sides gives an
equation which is quadratic in π0. This method does not require estimation of π in the
standard error, since the standard error in the test statistic uses the null value π0.

Example 1.5. A clinical trial is conducted to evaluate a new treatment. This experiment
has nine successes in the first 10 trials. Construct the 95% Score and Wald CIs.

Solution: The sample proportion of successes p = 0.90 based on n = 10 trials. The
solutions for n(p − π0)2 = π0(1 − π0)z2

α/2 are 0.596 and 0.982. Thus, the 95% Score CI is

(0.596, 0.982).

By contrast, using the estimated standard error gives confidence interval (0.714, 1.086) in
which the upper limit is greater than 1. That is why, it is said Wald CI works poorly when
the parameter may fall near the boundary values of 0 or 1.

Example 1.6. Of n = 16 students, y = 0 answered ”yes” for the question ”Did you
ever smoke cigarette?”. Construct the 95% Wald and Score confidence intervals for the
population proportion of smoker students.
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Solution: Let π be the population proportion of smoker students. Since y = 0, p = 0
16

= 0.

The 95% Wald CI is given by (p± zα/2
√
p(1− p)/n) = (0± 1.96

√
0(1− 0)/16) = (0, 0).

As said before when the number of successes is near 0 or near n, Wald methods do not
provide sensible results.

The 95% Score confidence interval is obtained by solving |0− π0| = ±1.96
√
π0(1− π0)/16

for π0. By contrast this provides the interval (0, 0.316) which is sensible than the Wald
interval (0, 0).

LR CI: The likelihood-ratio confidence interval is −2 log(`0/`1) ≤ χ2
α(1). Here, `0 =

`(π0) = (1 − π0)16 and `1 = `(0) = 1. Thus, −2 log(1 − π0)16 ≤ 3.84 which implies
π0 ≤ 0.113. Therefore, the 95% likelihood-ratio confidence interval is (0.0, 0.113) which is
narrower than the Score CI.

Example 1.7. Recall example 1.5: a clinical trial that has nine successes in the first 10
trials. Test the hypothesis of H0 : π = 0.5 using the three methods and construct the
corresponding confidence intervals.

Solution: The Wald test is

z =
0.90− 0.50√

0.90(1− 0.90)/10
= 4.22.

The corresponding chi-squared statistic is z2 = (4.22)2 = 17.8 (df = 1). Since z = 4.22 >
z0.025 = 1.96 or z2 = 17.8 > χ2

0.05(1) = 3.84, there is sufficient evidence to reject H0.

The score test is

z =
0.90− 0.50√

0.5(1− 0.5)/10
= 2.53.

Again using the Score test, since z = 2.53 > z0.025 = 1.96, H0 should be rejected.

For the likelihood-ratio test, the maximum value of the likelihood function is obtained as
`1 =

(
10
9

)
(0.90)9(0.10)1 = 0.3874. Also, when H0 : π = 0.50 is true, the likelihood value is

`0 =
(

10
9

)
(0.50)9(0.50)1 = 0.0098. Thus, the value of the likelihood-ratio test statistic is

G2 = −2 log(`0/`1) = −2 log(0.0098/0.3874) = −2 log(0.0253) = 7.3539.

From the chi-squared distribution with df = 1 at 5% level of significance, χ2
0.05 = 3.84, this

statistic has a larger value which results the rejection of H0.

1.4.4 Small Sample Binomial Inference

When the sample size is small to moderate, the Wald test is the least reliable of the
three tests. In other cases, for large samples they have similar behavior when H0 is true.
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For ordinary regression models assuming a normal distribution, the three tests provide
identical results. A marked divergence in the values of the three statistics indicates that
the distribution of the maximum likelihood estimator may be far from normality. In that
case, small sample methods are more appropriate than large sample methods.

Exact p-values

For small samples, it is safer to use the binomial distribution directly (rather than a normal
approximation) to calculate the p-values. For H0 : π = π0, the p-value is based on the
binomial distribution with parameters n and π0, Bin(n, π0).

For H1 : π > π0, the exact one-sided p-value is P (Y ≥ y) =
n∑
x=y

(
n
x

)
πx0 (1−π0)n−x. Similarly,

for H1 : π < π0, the exact one-sided p-value is P (Y ≤ y) =
y∑

x=0

(
n
x

)
πx0 (1− π0)n−x.

It is easy to calculate a two-sided p-value for a symmetric distribution centered at 0, such
as Z ∼ N (0, 1), which is P (|Z| > z) = 2 × P (Z ≥ |z|). In general, if the distribution
is symmetric but not necessary centered at 0, then the exact two-sided p-value is 2 ×
min[P (Y ≥ y), P (Y ≤ y)]

Example 1.8. Recall again example 1.5. Find the exact one sided and two-sided p-values.

Solution: The historical norm for the clinical trial is 50%. So we want to test if the
response rate of the new treatment is greater than 50%. For H1 : π > 0.50, p-value=P (Y ≥
9) = P (Y = 9) + P (Y = 10) = 0.0107. For H1 : π 6= 0.50, p-value=2 × P (Y ≥ 9) =
2× [P (Y = 9) + P (Y = 10)] = 2× 0.0107 = 0.0214. In both cases, H0 should be rejected
at 5% level of significance. That is, the treatment is significantly effective.

Exact Confidence Interval

A (1− α)100% confidence interval for π is of the form P (πL ≤ π ≤ πU) = 1− α where πL
and πU are the lower and upper end points of the interval. Given the level of significance
α, observed number of successes y and number of trials n, the endpoints πL and πU , re-
spectively, satisfy

P (Y ≥ y|π = πL) =
n∑
x=y

(
n

x

)
πxL(1− πL)n−x = α/2

and

P (Y ≤ y|π = πU) =
n∑
x=y

(
n

x

)
πxU(1− πU)n−x = α/2

except that the lower bound πL = 0 when y = 0 and the upper bound πU = 1 when y = n.
It can figure out πL and πU by plugging different values for πL and πU until values that
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approximate α/2 are obtained. In fact, this can be easily implemented using a computer,
so there is no need to do it by hand.

Example 1.9. If 4 successes are observed in 5 trials, find the 95% exact confidence interval.

Solution: The lower bound πL of the exact confidence interval (πL, πU) is the value of

πL for which P (Y ≥ 4|π = πL) =
5∑
y=4

(
5
y

)
πyL(1 − πL)5−y approximates 0.025. Similarly,

the upper bound πU of the exact confidence interval (πL, πU) is the value of πU for which

P (Y ≤ 4|π = πU) =
4∑
y=0

(
5
y

)
πyU(1 − πU)5−y approximates 0.025. Using trial and error, the

values of πL and πU can be determined as shown in the following table.

Lower Bound Upper Bound
πL P (Y ≥ 4|π = πL) πU P (Y ≤ 4|π = πU)

0.250 0.0156 0.800 0.6723
0.260 0.0181 0.900 0.4095
0.270 0.0208 0.950 0.2262
0.280 0.0238 0.990 0.0490
0.285 0.02547 ≈ 0.025 0.995 0.02475 ≈ 0.025

Thus, the 95% exact confidence interval for π is (0.285,0.995).

1.5 Comparing Two Population Proportions

For comparisons of two population proportions, independent random samples are assumed
to be drawn from two binomial populations with parameters π1 and π2. If y1 is the number
of successes to be observed for a random sample of size n1 from population (group) 1 and
y2 is the number of successes to be observed for a random sample of size n2 from population
(group) 2, then the point estimators of π1 and π2 are the sample proportions p1 = y1

n1
and

p2 = y2
n2

, respectively.

The interest is whether the two population proportions are equal π1 = π2, that is, whether
the difference between the two population proportions (absolute risk) is zero π1 − π2 = 0.
The point estimator of the difference of the population proportions π1− π2 is p1− p2. The
mean of the sampling distribution of the difference of the sample proportions p1 − p2 is
E(p1−p2) = µp1−p2 = π1−π2. The variance of the sampling distribution of the difference of

the population proportions p1−p2 is also given as V (p1−p2) = σ2
p1−p2 = π1(1−π1)

n1
+ π2(1−π2)

n2
.

Thus, p1 − p2 ∼ N
[
π1 − π2,

π1(1−π1)
n1

+ π2(1−π2)
n2

]
.

The standard error is SE(p1−p2) = σp1−p2 =
√

π1(1−π1)
n1

+ π2(1−π2)
n2

. The estimated standard

error is ŜE(p1 − p2) = σ̂p1−p2 =
√

p1(1−p1)
n1

+ p2(1−p2)
n2

.
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1.5.1 Testing for Difference of Two Population Proportions

Step 1: State both the null and alternative hypotheses. There three possible options are:

Option 1: H0 : π1 − π2 = 0 vs H1 : π1 − π2 6= 0

Option 2: H0 : π1 − π2 = 0 vs H1 : π1 − π2 < 0

Option 3: H0 : π1 − π2 = 0 vs H1 : π1 − π2 > 0

Step 2: Specify the level of significance α and obtain the critical value. The critical value
for a two sided test is zα/2 whereas the critical value for a one sided test is zα.

Step 3: Use the z test statistic and obtain its calculated value:

Z =
(p1 − p2)− (π1 − π2)√

p1(1−p2)
n1

+ p2(1−p2)
n2

∼ N (0, 1).

Step 4: Decision: If |zcal| > ztab (p− value < α), H0 can be rejected.

Step 5: Conclusion.

Example 1.10. A study looked at the effects of OC use on heart disease in women 40-44
years of age. The researchers found that among 50 current OC users at baseline, 13 women
developed a myocardial infarction (MI) over a 3 year period, whereas among 100 non-OC
users, 7 developed an MI over a 3-year period. Assess the statistical significance of the
results.

Solution: Let π1 be the proportion of MI among OC users and π2 be the proportion of
MI among non-OC users. The sample proportion of MI among OC users is p1 = 13

50
= 0.26

and the sample proportion of MI among non-OC users is p2 = 7
100

= 0.07.

Step 1: Hypothesis:

H0 : π1 − π2 = 0. The proportions of MI among OC users and non-OC users are not
significantly different. That is, OC has not a significant effect.

H1 : π1 − π2 6= 0. The proportions of MI among OC users and non-OC users are
significantly different. That is, OC has a significant effect.

Step 2: Assuming α = 0.05, z0.025 = 1.96.

Step 3: The calculated value of the z test statistic is:

z =
(p1 − p2)− (π1 − π2)√

p1(1−p2)
n1

+ p2(1−p2)
n2

=
(0.26− 0.07)− 0√

0.26(1−0.26)
50

+ 0.07(1−0.07)
100

=
0.19

0.067
= 2.836

15

mailto:es.awol@gmail.com


CDA - Stat 3062 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

Step 4: Decision: Since zcal = 2.836 > z0.025 = 1.96, H0 can be rejected. Or p−value
= 2× P [Z > 2.836] = 2× 0.0023 = 0.0046 < α = 0.05.

Step 5: Conclusion. The proportions of MI among OC users and non-OC users are signif-
icantly different at 5% level of significance. That is, OC use has a significant positive
effect to develop MI at 5% level of significance.

1.5.2 Interval Estimation for π1 − π2

The (1 − α)100% confidence interval for the difference of the two population proportions
π1 − π2 are given by: (p1 − p2)± zα/2

√
p1(1− p1)

n1

+
p2(1− p2)

n2

 .

Example 1.11. Consider again example 1.10 and construct the 95% confidence interval
for the difference in the proportions of MI between OC and non-OC users.

Solution: The 95% confidence interval for the difference in the proportions of MI between
OC and non-OC users π1 − π2 is:{

(0.26− 0.07)± 1.96

√
0.26(1− 0.26)

50
+

0.07(1− 0.07)

100

}
= (0.059, 0.321).

Since the confidence interval is greater than 0, OC use has a significant positive effect to
develop MI at 5% level of significance.
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Chapter 2

Contingency Tables

2.1 Objective and Learning Outcomes

For a single categorical variable, the data can summarized by counting the number of ob-
servations (frequency) in each category. The sample proportions in the categories estimate
the category probabilities. For two or more categorical variables, the data is summarized in
a tabular form in which the cells of the table contain number of observations (frequencies)
in the intersection categories of the variables. Such a table is called contingency table. The
objective of this chapter is to discuss statistical methods to be used for contingency table
analysis.

Upon completion of this chapter, students are expected to:

• Determine probability structures (joint, marginal and conditional distributions) for
contingency tables.

• Use the Pearson’s chi-square and likelihood-ratio tests to examine independence of
factors.

• Define the difference of proportions, relative risk and odds ratio, and use them to
test independence of factors in a multinomial sample.

• Differentiate marginal and conditional associations, marginal and conditional inde-
pendence in three-way contingency tables.

• Test homogeneity of proportions and check goodness-of-fit of a set of data to a specific
probability distribution.
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2.2 Two-Way Contingency Table

2.3 Contingency Table Method

Let X and Y denote two categorical variables with I and J categories (levels), respectively.
Then, classifications of subjects on both variables have IJ possible combinations and the
contingency table is called a two-way table or an I × J (read as I-by-J) table.

Suppose N subjects are classified on both X and Y as shown in Table 2.1. Then Nij

represents the number of subjects belonging to the ith category of X and jth category of
Y .

Table 2.1: Layout of an I × J Contingency Table

Y
X 1 2 · · · j · · · J Total
1 N11 N12 · · · N1j · · · N1J N1+

2 N21 N22 · · · N2j · · · N2J N2+
...

...
...

. . .
...

...
...

...
i Ni1 Ni2 · · · Nij · · · NiJ Ni+
...

...
...

...
...

. . .
...

...
I NI1 NI2 · · · NIj · · · NIJ NI+

Total N+1 N+2 · · · N+j · · · N+J N

Here, Ni+ and N+j are the marginal totals representing the number of subjects belonging

to the ith category of X and the jth category of Y , respectively. Note that Ni+ =
J∑
j=1

Nij

and N+j =
I∑
i=1

Nij. Also, the population size N =
I∑
i=1

Ni+ =
J∑
j=1

N+j =
I∑
i=1

J∑
j=1

Nij.

2.3.1 Probability Structures for Contingency Tables

The joint probability distribution of the responses (X, Y ) of a subject chosen randomly
from some population can be determined from the contingency table. This joint distri-
bution determines the relationship between the two categorical variables. Also, from this
distribution, the marginal and conditional distributions can be determined.
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Joint and Marginal Probabilities

The (true) probability of a subject being in the ith category of X and jth category of Y is

P (X = i, Y = j) = πij =
Nij

N
.

The probability distribution {πij} is the joint distribution of X and Y shown in Table 2.2.
The marginal distribution of each variable is the sum of the joint probabilities over all the
categories of the other variable. That is,

P (X = i) = πi+ =
J∑
j=1

πij =
Ni+

N
and P (Y = j) = π+j =

I∑
i=1

πij =
N+j

N
.

Table 2.2: Joint and Marginal Distributions X and Y

Y
X 1 2 · · · j · · · J Total
1 π11 π12 · · · π1j · · · π1J π1+

2 π21 π22 · · · π2j · · · π2J π2+
...

...
...

. . .
...

...
...

...
i πi1 πi2 · · · πij · · · πiJ πi+
...

...
...

...
...

. . .
...

...
I πI1 πI2 · · · πIj · · · πIJ πI+

Total π+1 π+2 · · · π+j · · · π+J 1

Thus, {πi+} is the marginal distribution of X and {π+j} is the marginal distribution of Y.

The marginal distributions provide single-variable information. Note also that
I∑
i=1

πi+ =

J∑
j=1

π+j =
I∑
i=1

J∑
j=1

πij = 1.

Conditional Probabilities

The joint distribution of X and Y is more useful if both variables are responses. But if one
of the variable is explanatory (fixed), the notion of the joint distribution is no longer useful.

If X is fixed, for each category of X, Y has a probability distribution. Hence, it is impor-
tant to study how the distribution of Y changes as the category of X changes.
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Given that a subject is belong to the ith category of X, then

P (Y = j|X = i) = πj|i =
πij
πi+

denotes the conditional probability of that subject belonging to the jth category of Y . In
other words, πj|i is the conditional probability of a subject being in the jth category of Y
if it is in the ith category of X. Thus, {πj|i; j = 1, 2, · · · , J} is the conditional distribution

of Y at the ith category of X. Note also that
J∑
j=1

πj|i = 1.

Table 2.3: Conditional Distributions of Y Given X

Y
X 1 2 · · · j · · · J Total
1 π1|1 π2|1 · · · πj|1 · · · πJ |1 1
2 π1|2 π2|2 · · · πj|2 · · · πJ |2 1
...

...
...

. . .
...

...
...

...
i π1|i π2|i · · · πj|i · · · πJ |i 1
...

...
...

...
...

. . .
...

...
I π1|I π2|I · · · πj|I · · · πJ |I 1

The probabilities {π1|i, π2|i, · · · , πj|i, · · · , πJ |i} form the conditional distribution of Y at
the ith category of X. A principal aim in many studies is to compare the conditional
distribution of Y at various level of X.

Example 2.1. In the HAART Data used by Seid et al. (2014), there were 1464 HIV/AIDS
patients. Of these 22.6% were defaulters. 63.5% of these patients were females including
189 defaulters.

1. Construct the contingency table.

2. Find the joint and marginal distributions.

3. If a patient is selected at random, what is the probability that the patient is

(a) a female and defaulter?

(b) a male?

(c) defaulter if the patient is female?

Solution:

1. The contingency table is
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Defaulter
Gender Yes (1) No (2) Total
Female (1) N11 = 189 N12 = 741 N1+ = 930
Male (2) N21 = 142 N22 = 392 N2+ = 534
Total N+1 = 331 N+2 = 1133 N = 1464

2. The joint and marginal distributions are

Defaulter
Gender Yes (1) No (2) Total
Female (1) π11 = 0.129 π12 = 0.506 π1+ = 0.635
Male (2) π21 = 0.097 π22 = 0.268 π2+ = 0.365
Total π+1 = 0.226 π+2 = 0.774 1.000

3. If a patient is selected at random,

(a) P (Gender = 1,Defaulter = 1) = N11

N
= 189

1464
= 0.1291.

(b) P (Gender = 2) = N2+

N
= 534

1464
= 0.3648.

(c) P (Defaulter = 1|Gender = 1) = N11

N1+
= 189

930
= 0.2032.

2.3.2 Statistical Independence

Statistical independence is a condition of no relationship between two variables in a popu-
lation. In probability terms, two categorical variables are defined to be independent if all
joint probabilities are the product of their marginal probabilities. That is, if X and Y are
independent then πij = πi+π+j for all i and j.

Also, when X and Y are independent, each conditional distribution of Y is identical to the
marginal distribution of Y . That is, πj|i = π+j for all i. Thus, two categorical variables
are independent when πj|1 = πj|2 = · · · = πj|I for j = 1, 2, · · · , J ; that is, the probability of
any category of Y is the same in each category of X which is often referred as homogeneity
of conditional distributions. This is a more better definition of independence than πij =
πi+π+j when one of the variables is explanatory.

Example 2.2. Recall example 2.2. Are the sex of the patient and defaulting statistically
independent? The answer is No. Why?

2.3.3 Binomial, Multinomial and Poisson Sampling

The probability distributions introduced in Section 1.3 on page 4 can be extended to cell
counts in a contingency table.

Table 2.2 and 2.3 display population notations for joint (and marginal) and conditional
distributions for an I × J table, respectively. For sample data, the notation nij instead of
Nij and pij instead of πij are used.
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Multinomial Sampling Models

If a sample of n subjects are classified based on two categorical variables (one with I and
the other with J categories), there will be IJ possible outcomes (cells). Let Yij denote
the number of outcomes in the ith category of X and jth category of Y , and let πij be its
corresponding probability. Then the probability mass function of the cell counts has the
multinomial form

P (Y11 = n11, Y12 = n12, · · · , YIJ = nIJ) =
n!

I∏
i=1

J∏
j=1

nij!

I∏
i=1

J∏
j=1

π
nij

ij

such that
I∑
i=1

J∑
j=1

nij = n and
I∑
i=1

J∑
j=1

πij = 1.

Example 2.3. To study the relationship between smoking cigarette (Yes, No) and occur-
rence of lung cancer (Yes, No), the data can be summarized in a 2 × 2 table format as
follows.

Lung Cancer
Smoking Yes No Total
Yes n11 = n12 = n1+ =
No n21 = n22 = n2+ =
Total n+1 = n+2 = n =

If a random sample n = 300 individuals is taken and classified according to these two
variables (smoking and lung cancer), then the total sample size n is treated as fixed.
Hence, the four cells are treated as a multinomial random variables with n = 300 trials
and unknown joint probabilities {π11, π12, π21, π22}. For example, if {π11, π12, π21, π22} =
{0.10, 0.20, 0.40, 0.30}, then

P (n11, n12, n21, n22) =
200!

n11!n12!n21!n22!
0.10n110.20n120.40n210.30n22 .

Independent Multinomial (Binomial) Sampling Models

If one of the two variables is explanatory, the observations on the response variable occur
separately at each category of the explanatory variable. In such case, the marginal totals of
the explanatory variable are treated as fixed. Thus, for the ith category of the explanatory
variable, the cell counts {Yij; j = 1, 2, · · · , J} has a multinomial form with probabilities
{πj|i; j = 1, 2, · · · , J}. That is,

P (Yi1 = ni1, Yi2 = ni2, · · · , YiJ = niJ) =
ni+!
J∏
j=1

nij!

J∏
j=1

π
nij

j|i
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provided that
J∑
j=1

nij = ni+ and
J∑
j=1

πj|i = 1. If J = 2, it will reduced to binomial distribu-

tion.

When samples at different categories of the explanatory variable are independent, the joint
probability mass function for the entire cells of the contingency table is the product of the
multinomial functions at various categories. That is,

P (Y11 = n11, Y12 = n12, · · · , YIJ = nIJ) =
I∏
i=1

ni+!
J∏
j=1

nij!

J∏
j=1

π
nij

j|i .

This sampling scheme is called independent (product) multinomial sampling. Again here
if J = 2, it will be an independent (product) binomial sampling.

Example 2.4. Recall example 2.3. Suppose, instead, random samples of 100 smokers and
200 nonsmokers are taken, and follow up both groups for some years. Finally, each group
is classified based on a clinical examination whether they developed lung cancer or not.
{It is like a prospective design or a cohort study ’looking in the future’. In this case, the
marginal totals for smoking status are fixed at n1+ = 100 and n2+ = 200 (i.e., the marginal
distribution of smoking status is fixed by the sampling design). Such studies provide pro-
portions for the conditional distribution of developing lung cancer, given smoking status.}
Thus, for each smoking status, the recoded results will be independent binomial samples.

In another way, if random samples of 100 individuals who have lung cancer and 200 indi-
viduals who do not have lung cancer are selected, and classified each sample based on the
smoking history of the individuals. Now, the marginal totals for lung cancer are fixed at
100 and 200. {It is a retrospective design or a case-control study ’looking in the past ’. In
this case, the marginal totals for lung cancer status are fixed at n+1 = 100 and n+2 = 200.
Using this retrospective sample, the probability of lung cancer at each category of smoking
habit can not be estimated.} Hence, for each lung cancer outcome, the recoded results are
independent binomial samples.

Poisson Sampling Models

A poisson sampling model treats the cell counts as independent poisson random variables
with parameters {µij}. Thus, the joint probability mass function for all outcomes is,
therefore, the product of the poisson probabilities for the IJ cells;

P (Y11 = n11, Y12 = n12, · · · , YIJ = nIJ) =
I∏
i=1

J∏
j=1

e−µijµ
nij

ij

nij!
.

Example 2.5. Recall again example 2.3. If no sample is taken, the total sample size is a
random variable. As a result, the number of observations at the four combinations of the
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two variables are treated as independent poisson random variables with unknown means
{µ11, µ12, µ21, µ22}. If, for example, {µ11, µ12, µ21, µ22} = {10, 50, 60, 20}, we can easily find
P (n11, n12, n21, n22).

Example 2.6. Given the following data from a political science study concerning opinion
in a particular city of a new governmental policy affiliation.

Policy Opinion
Party Favor Policy Do not Favor Policy No Opinion Total
Democrats 200 200 100 500
Republicans 250 175 75 500
Total 450 375 175 1000

1. What are the sampling techniques that could have produced these data?

2. Construct the probability structure.

3. Find the multinomial sampling and independent multinomial sampling models.

Solution:

1. Two distinct sampling procedures can be considered that could have produced the
data. In the first, a random sample of 1000 individuals in the city might be selected
(the total sample size is fixed at 1000) and each individual is asked his/her party
affiliation (democrats or republicans) and his/her opinion concerning the new policy
(favor, do not favor or no opinion). This sampling scheme is multinomial sampling
which elicits two responses from each individual. Hence, totally there are 2× 3 = 6
response categories.

In the second sampling scheme, a random sample of 500 democrats was selected
from a list of registered democrats in the city and each democrat was asked his or
her opinion concerning the new policy (favor, do not favor or no opinion) and a
completely analogous procedure was used on 500 republicans (the marginal totals
of both political party affiliations are fixed at 500 a priori). This is an independent
multinomial sampling scheme which elicits only one response from each individual.
Now, there are 3 response categories for each party affiliation.

2. The probability structure is

Policy Opinion
Party Favor Policy Do not Favor Policy No Opinion Total
Democrats 0.200 0.200 0.100 0.500
Republicans 0.250 0.175 0.075 0.500
Total 0.450 0.375 0.175 1.000
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3. The multinomial sampling uses the above joint probability structure. For the inde-
pendent multinomial sampling models, the conditional probability distribution for
each party, shown below, is used.

Policy Opinion
Party Favor Policy Do not Favor Policy No Opinion Total
Democrats 0.40 0.40 0.20 1.00
Republicans 0.50 0.35 0.15 1.00

2.4 Chi-squared Tests of Independence

For a multinomial sampling with probabilities πij in an I × J contingency table, the null
hypothesis of statistical independence is H0 : πij = πi+π+j for all i and j. For independent
multinomial samples, independence corresponds to homogeneity of each outcome probabil-
ity among the categories of the fixed variable. The marginal probabilities then determine
the joint probabilities.

Under H0 : πij = πi+π+j, the expected values of cell counts are {µij = nπi+π+j}. That
is, µij is the expected number of subjects in the ith category of X and jth category of Y .
Since {πi+} and {π+j} are unknown, their maximum likelihood estimates, respectively, are{
pi+ = ni+

n

}
and

{
p+j =

n+j

n

}
. which are the sample marginal proportions. Hence, the

estimated expected frequencies are
{
µ̂ij = npi+p+j =

ni+n+j

n

}
.

Table 2.4: Observed and Expected Frequencies in an I × J Table

Y
X 1 2 · · · j · · · J Total
1 n11 (µ̂11) n12 (µ̂12) · · · n1j (µ̂1j) · · · n1J (µ̂1J) n1+

2 n21 (µ̂21) n22 (µ̂22) · · · n2j (µ̂2j) · · · n2J (µ̂2J) n2+
...

...
...

. . .
...

...
...

...
i ni1 (µ̂i1) ni2 (µ̂i2) · · · nij (µ̂ij) · · · niJ (µ̂iJ) ni+
...

...
...

...
...

. . .
...

...
I nI1 (µ̂I1) nI2 (µ̂I2) · · · nIj (µ̂Ij) · · · nIJ (µ̂IJ) nI+

Total n+1 n+2 · · · n+j · · · n+J n
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2.4.1 The Chi-square Test Statistic

The Pearson chi-squared statistic for testing independence of two categorical variables is
defined as:

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
∼ χ2[(I − 1)(J − 1)].

Step 1: Hypothesis:

H0 : πij = πi+π+j ∀i, j. The two variables have no significant association.

H1 : not H0. The variables are significantly associated.

Step 2: Obtain the critical value χ2
α[(I − 1)(J − 1)].

Step 3: The calculated value of the X2 test statistic is:

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
.

Step 4: Decision: If X2
cal > χ2

α[(I − 1)(J − 1)], the null hypothesis H0 of no statistical
association can be rejected. Or if p− value = P (χ2[(I − 1)(J − 1)] > X2

cal) is smaller
than α, H0 can be rejected.

Step 5: Conclusion.

2.4.2 The Likelihood-Ratio Test Statistic

The likelihood-ratio test statistic is an alternative test for independence that uses likeli-
hood values. A likelihood-ratio statistic is defined as G2 = −2 log(`0/`1) where `0 is the
maximized value of the likelihood function under H0 and `1 is the maximized value of the
likelihood function in general. Therefore, the likelihood-ratio test statistic for independence
can be easily derived as

G2 = 2
I∑
i=1

J∑
j=1

nij log

(
nij
µ̂ij

)
∼ χ2[(I − 1)(J − 1)].

WhenH0 holds, the PearsonX2 and likelihood-ratioG2 statistics both have asymptotic chi-
squared distributions with [(I−1)(J−1)] degrees of freedom. For a better approximation,
the general rule is that the smallest expected frequency should be at least 5. In general,
if more than 20% of the expected frequencies are less than 5, the approximation worsens
(that is, the test is not valid).
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Example 2.7. The table below shows the distribution of HIV/AIDS patients by the sur-
vival outcome (active, dead, transferred to other hospital and lost-to-follow) and gender.

Survival Outcome
Gender Active Dead Transferred Lost-to-follow Total
Female 741 25 63 101 930
Male 392 20 52 70 534
Total 1133 45 115 171 1464

Test whether or not the survival outcome depends on gender using both the Pearson chi-
square and likelihood-ratio tests.

Solution: First let us find the expected cell counts, µ̂ij =
ni+n+j

n
.

Survival Outcome
Gender Active Dead Transferred Lost-to-follow Total
Female 741 (719.7) 25 (28.6) 63 (73.1) 101 (108.6) 930
Male 392 (413.3) 20 (16.4) 52 (41.9) 70 (62.4) 534
Total 1133 45 115 171 1464

Step 1: Hypothesis:

H0 : πij = πi+π+j ∀i, j. Survival outcome and gender have no significant association.

H1 : not H0. Survival outcome depends on gender.

Step 2: The critical value χ2
α[(2− 1)(4− 1)] = χ2

0.05(3) = 7.8147.

Step 3: The calculated value of the X2 and G2 test statistics, respectively, are:

X2 =
I∑
i=1

J∑
j=1

(nij − µ̂ij)2

µ̂ij
=

(741− 719.7)2

719.7
+

(25− 28.6)2

28.6
+ · · ·+ (70− 62.4)2

62.4

= 8.2172

and

G2 = 2
I∑
i=1

J∑
j=1

nij log

(
nij
µ̂ij

)
= 2

[
741 log

(
741

719.7

)
+ 25 log

(
25

28.6

)
+ · · ·+ 70 log

(
70

62.4

)]
= 8.0720

Step 4: Decision: Since both statistics have larger values than χ2
0.05(3) = 7.8147, the

null hypothesis H0 can be rejected. Also, p − value = P (χ2(3) > 8.0720) = 0.0445
suggests rejection of no association between the two variables.

Step 5: Conclusion: The survival outcome of patients depends on gender at 5% level of
significance.
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2.5 Measuring Strength of Association

There are many situations where both the independent and dependent variables have
two levels. Let X (explanatory) and Y (response) be binary variables. The data can
be displayed in a 2 × 2 contingency table in which the rows are the levels of X and the
columns are the levels of Y . Let us use the generic terms success and failure for the outcome
categories of Y .

Y
X Success (1) Failure (2) Total
1 N11 N12 N1+

2 N21 N22 N2+

Total N+1 N+2 N

For each category i; i = 1, 2 of X, P (Y = j|X = i) = πj|i; j = 1, 2. Then, the conditional
probability structure is as follows.

Y
X Success (1) Failure (2) Total
1 π1|1 π2|1 1
2 π1|2 π2|2 1

Here, π1|1 and π1|2 are the proportions of successes in category 1 and 2 of X, respectively.
From now onwards, let us use π1 and π2 are the proportions of successes in category 1 and
2 of X, respectively.

Y
X Success (1) Failure (2) Total
1 π1 π′1 1
2 π2 π′2 1

In chi-square test, the question of interest is whether there is a statistical association
between the explanatory (X) and the response (Y ) variables. The hypothesis to be tested
is

H0 : π1 = π2 (There is no association between X and Y )

H1 : π1 6= π2 (There is an association between X and Y )

A significant chi-squared test merely tells the existence of the association between the
variables. If an association exists, the next task is identifying the category of X which has
a larger (smaller) proportion of successes. This can be done by calculating the difference
of proportions, a relative risk and an odds ratio.
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2.5.1 Difference of Proportions (Absolute Risk)

The difference of proportions (absolute risk) is a simple procedure which compares the
probability of success between two groups. It is calculated as π1−π2. It is interesting that
the difference in proportions ranges between -1 and +1. If π1 − π2 ≈ 0, the proportion
of successes in both categories of X are almost the same (0 is a baseline for comparison).
That is, if π1 − π2 ≈ 0, categories of X have identical conditional distributions. On the
contrary, if π1 − π2 ≈ ±1, the association between X and Y is strong (indicates a high
level of association).

Let p1 and p2 be the sample proportion of successes in category 1 and 2 of X, respectively.
The difference of the sample proportion of successes p1− p2 estimates the difference of the
population proportion of successes π1−π2. (Details are already discussed in Section 2.5.1).

Example 2.8. An educational researcher designs a study to compare the effectiveness of
teaching English to non-English speaking people by a computer software program and by
the traditional classroom system. The researcher randomly assigns 35 students from a class
of 100 to instruction using the computer. The remaining 65 students are instructed using
the traditional method. At the end of a 6-month instructional period, all 100 students are
given an examination with the results reported in the following table.

Examination Result
Instruction Method Pass Fail Total
Traditional 45 20 65
Computer 32 3 35
Total 77 23 100

Find the difference of the pass proportions and interpret. Also test the significance using
the 95% confidence interval.

Solution: The conditional probabilities for each instruction method are shown in the
following table.

Examination Result
Instruction Method Pass Fail Total
Traditional p1 = 0.692 p′1 = 0.308 1
Computer p2 = 0.914 p′2 = 0.086 1

The difference in the sample pass proportions is p1 − p2 = 0.692− 0.914 = −0.222. Since
the difference is less than 0, computer instruction seems to be a better way to improve
the academic performance of students in English course. The probability of passing in the
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traditional instruction method decreases by 0.222 as compared to passing in the computer
instruction method. Or, the probability of passing in the computer instruction method
increases by 0.222 as compared to passing in the traditional instruction method.

The 95% confidence interval for the difference in the pass proportions between the tradi-
tional and computer instruction methods π1 − π2 is[

(0.692− 0.914)± 1.96

√
0.692(1− 0.692)

65
+

0.914(1− 0.914)

35

]
= (−0.222±

√
0.0033 + 0.022) = (−0.222± 0.0742) = (−0.2962,−0.1478).

Thus, since the confidence interval is less than 0, the difference of the pass proportions in
the two instruction methods is significantly different (particularly computer instruction is
better than traditional instruction). Specifically, the probability of passing in the tradi-
tional instruction method decreases by between 0.1478 and 0.2962 at 5% significance level
as compared to passing in the computer instruction method.

2.5.2 Relative Risk

Relative risk is the ratio of the probability of successes in two groups. That is,

r =
π1

π2

=
N11N12

N1+N2+

.

The value of a relative risk is non-negative, that is, r ≥ 0. If r ≈ 1, the proportion of
successes in the two categories of X are approximately the same. This corresponds to
independence or it is baseline for comparison. On the other hand, values of the relative
risk r farther from 1 in a given direction represent stronger association. A relative risk of 4
is farther from independence than a relative risk of 2, and a relative risk of 0.25 is farther
from independence than a relative risk of 0.50. Two values for relative risk (for example, 4
and 0.25) represent the same strength of association, but in opposite directions, when one
value is the inverse of the other.

The sample relative risk r̂ = p1
p2

estimates the population relative risk r.

Example 2.9. Find the relative risk for the data given on example 2.8 and interpret it.

Solution: The conditional probabilities for each instruction method are shown in the
following table.

Examination Result
Instruction Method Pass Fail Total
Traditional p1 = 0.692 p′1 = 0.308 1
Computer p2 = 0.914 p′2 = 0.086 1

30

mailto:es.awol@gmail.com


CDA - Stat 3062 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

The estimate of the relative risk is r̂ = p1
p2

= 0.692
0.914

= 0.757. It can be interpreted as follows:

• The proportion of passing in the traditional instruction method is 0.757 times the
proportion of passing in the computer instruction method.

• The traditional instruction method reduces the probability of passing by (1−r̂)100% =
(1− 0.757)100% = 24.3% relative to computer instruction method.

• Or, by inverting, the probability of passing in the computer instruction method is
1.321 times the probability of passing in the traditional instruction method.

• This means, computer instruction method (relative to traditional instruction method)
increases the probability of passing the exam by (r̂ − 1)100% = (1.321 − 1)100% =
32.1%.

Note: Relative risk is a widely reported measure of association between exposure status
and disease state for prospective studies (cohort and randomized clinical trials). In such
case, the levels of the explanatory variable are being exposed (E) and being unexposed
(E ′), and the levels of the response variable are having a disease (D) and not-having a
disease (D′).

Disease
Exposure Present (D) Absent (D′) Total
Exposed (E) n11 n12 n1+

Unexposed (E ′) n21 n22 n2+

Total ? ? n

For this particular case, relative risk is a ratio of the probability of having a disease among
those exposed to the probability of having the disease among those unexposed:

r =
P (D|E)

P (D|E ′)
.

• A relative risk of 1.0 implies that the risk of a disease is the same in both exposed
and unexposed groups (no association between the exposure and the disease).

• A relative risk greater than 1.0 implies the exposed group have a higher probability
of having a disease than the unexposed group (the exposure is a risk factor).

• A relative risk less than 1.0 implies that the exposed group has a lower chance of
having disease than unexposed group (it is expected in drug efficacy studies, the
exposure is a protective factor).
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Testing for a Relative Risk

To infer about a relative risk r, the sampling distribution of the sample relative risk r̂
should be determined. The values of the relative risk are highly skewed to the right. As
a result, by taking the logarithm of r̂, it turns out that log(r̂) is approximately normally
distributed for large values of n. If the probability of successes are approximately equal in
the two groups, then r = 1 or log(r) = 0 indicating no statistical association between the
two variables.

The standard error of log(r̂) is determined to be:

SE[log(r̂)] =

√
1

N11

− 1

N1+

+
1

N21

− 1

N2+

which can be estimated by:

ŜE[log(r̂)] =

√
1

n11

− 1

n1+

+
1

n21

− 1

n2+

.

Step 1: Hypothesis:

H0 : log(r) = 0 The two variables have no significant association.

H1 : log(r) 6= 0 The two variables are significantly associated.

Step 2: Obtain the critical value zα/2.

Step 3: Under H0 : log(r) = 0, for large values of n the test statistic is defined as:

Z =
log(r̂)− log(r)

ŜE[log(r̂)]
∼ N (0, 1).

Step 4: Decision: If |zcal| > zα/2, H0 should be rejected.

Step 5: Conclusion.

Example 2.10. Test the significance of the relative risk for the data given on example 2.8.

Solution: The estimate of the relative risk is r̂ = p1
p2

= 0.692
0.914

= 0.757 which implies log(r̂) =

log(0.757) = −0.2784 and the estimated standard error of log(r̂) is ŜE[log(r̂)] = 0.0975.

Step 1: Hypothesis:

H0 : r = 1⇒ log(r) = 0. Instruction method and exam result have no significant as-
sociation.

H1 : r 6= 1⇒ log(r) 6= 0. Instruction method and exam result have a significant as-
sociation.
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Step 2: Using α = 0.05, the critical value is z0.025 = 1.96.

Step 3: The calculated value of the z test statistic is:

z =
log(0.757)− 0√
1
45
− 1

65
+ 1

32
− 1

35

= −2.86.

Step 4: Decision: Since |zcal| = 2.86 > z0.025 = 1.96, H0 should be rejected.

Step 5: Conclusion: Therefore, the relative risk is significantly different from 1. Instruc-
tion method has a significant effect on examination result at 5% significance level.
Specifically, the computer instruction method has a positive effect in passing the
examination.

Confidence Interval for a Relative Risk

The (1− α)100% confidence interval for the log of a relative risk log(r) is given by

{log(r̂)± zα/2ŜE[log(r̂)]}.

Taking the exponentials of the end points this confidence interval provides the confidence
interval for a relative risk r, that is,

exp{log(r̂)± zα/2ŜE[log(r̂)]}.

Example 2.11. An efficacy study was conducted for the drug pamidronate in patients with
Paget’s disease of bone. In this randomized clinical trial, patients were assigned at random
to receive either pamidronate (E) or placebo (E ′). One end point was the occurrence of
any skeletal events after 9 cycles of treatment D and non-occurrence D′. The results are
given in the following table.

Skeletal Event
Exposure Yes (D) No (D′) Total
Pamidronate (E) 47 149 196
Placebo (E ′) 74 107 181
Total 121 256 377

Compute a 95% confidence interval for the relative risk of suffering skeletal events (in a
time period of this length) for patients on pamidronate relative to patients not on the drug.

Solution: Let π1 = P (D|E) and π2 = P (D|E ′). Thus, the estimated probability of pa-
tients suffering skeletal events among those receiving the drug, and among those receiving
the placebo are p1 = 47

196
= 0.240 and p2 = 74

181
= 0.409, respectively.
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Then, the estimated relative risk r is r̂ = 0.240
0.409

= 0.587 and its log value is log(r̂) = −0.533.

The estimated standard error of log of the estimated relative risk log(r̂) is ŜE[log(r̂)] =√
1
47
− 1

196
+ 1

74
− 1

181
= 0.155.

The 95% confidence interval for the log of the relative risk log(r) is −0.533±1.96(0.155) =
(−0.837, −0.229). Therefore, the 95% confidence interval for the relative risk r is

{exp(−0.837), exp(−0.229)} = (0.433, 0.795).

Thus, the relative risk of suffering a skeletal event (in this time period) for patients on
pamidronate (relative to patients not on pamidronate) is between 0.433 and 0.795 at 5%
significance level. Since this entire interval is below 1, it can be concluded that pamidronate
is effective in reducing the risk of skeletal events. Furthermore, pamidronate reduces the
risk of skeletal events by (1− r̂)100% = (1− 0.587)100% = 41.3%.

2.5.3 Odds Ratio

Before defining an odds ratio, let us define what an odds is? An odds (Ω) is the ratio of
the probability of success to the probability of failure in a particular group.

Ω =
p(success)

p(failure)
=

π

1− π
=

number of successes

number of failures

Like a relative risk, an odds is a nonnegative number (0 ≤ Ω <∞). If Ω = 1, a successes
is as likely as a failure. If Ω < 1, a success is less likely and if Ω > 1, a success is more
likely to occur than a failure. Inversely,

π =
Ω

1 + Ω
.

Odds ratio is the ratio of two odds. For a 2 × 2 table, for each group i of X, the odds of
successes (instead of failures) is

Ωi =
πi

1− πi
=
πi
π′i

; i = 1, 2.

Thus, the odds ratio is

θ =
Ω1

Ω2

=
π1π

′
2

π2π′1
=
N11N22

N12N21

=
π11π22

π12π21

.

Like a relative risk and an odds, an odds ratio is also non negative, that is, θ ≥ 0. An odds
ratio of 1 implies independence of X and Y which is a baseline for comparison. If it larger
than 1 (Ω1 > Ω2), a success is more likely to occur in category 1 of X than in category 2.
If the odds ratio is near zero (Ω1 < Ω2), then a success is less likely to occur in category 1
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than category 2.

Similar to a relative risk, values of an odds ratio θ farther from 1 in a given direction rep-
resent stronger association, that is, an odds ratio of 6 is farther from independence than
an odds ratio of 2, and an odds ratio of 0.20 is farther from independence than an odds
ratio of 0.60. Also, two values for odds ratio, when one value is the inverse of the other (for
example, 5 and 0.20) represent the same strength of association, but in opposite directions.

The sample odds ratio θ̂ is used to estimate the population odds ratio θ which is given by

θ̂ =
Ω̂1

Ω̂2

=
n11n22

n12n21

=
p11p22

p12p21

.

Example 2.12. Again recall example 2.8. Find the odds ratio and interpret.

Solution: The estimated probability of passing in the traditional instruction method is
p1 = 0.692. Then, the estimated odds of passing in this group is Ω̂1 = 0.692

1−0.692
= 2.247

which means the probability of passing in the traditional instruction group is 2.247 times
the probability of failing in that group.

Similarly, the estimated probability of passing in the computer instruction group is p2 =
0.914. Hence, the estimated odds of passing in this group is Ω̂2 = 0.914

1−0.914
= 10.628 which

means the probability of passing in the computer instruction group is 10.627 times the
probability of failing.

Therefore, the odds ratio of passing the exam (instead of failing) is the ratio of the odds
of passing in the traditional instruction method to the odds of passing in the computer

instruction group, that is, θ̂ = Ω̂1

Ω̂2
= 2.247

10.628
= 0.211. This value can be interpreted in

different ways as follows.

• The odds of passing (instead of failing) the exam in the traditional instruction method
is 0.211 times the odds of passing in the computer instruction method.

• The odds of passing (instead of failing) in the traditional instruction group decreases
by a factor of 0.211 relative to the odds of passing in the computer instruction group.

• That is, the odds of passing (instead of failing) in the traditional instruction group
is (1 − θ̂)100% = (1 − 0.211)100% = 78.9% lower than the odds of passing in the
computer instruction group.

• Those in the traditional instruction method group are 0.211 times less likely to pass
the exam (instead of failing) than those in the computer instruction group.

• Or inversely, the odds of passing (instead of failing) the exam in the computer in-
struction group is 4.739 times the odds of passing in the traditional instruction group.
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• The odds of passing (instead of failing) the exam in the computer instruction group
increases by a factor of 4.739 as compared to those in the traditional instruction
group.

• This means, the odds of passing (instead of failing) the exam in the computer in-
struction method is (θ̂ − 1)100% = (4.739− 1)100% = 373.9% higher than the odds
of passing in the traditional instruction group.

• Those in the computer instruction group are 4.739 times more likely to pass the exam
(instead of failing) than those in the traditional instruction method group.

Example 2.13. Given the following contingency table for the variable ”death penalty for
crime”.

Race
Penalty Blacks Nonblacks Total
Death Sentence 28 22 50
Life Imprisonment 45 52 97
Total 73 74 147

Find the odds of receiving a death sentence and interpret. Also, calculate the odds ratio
for receiving a death penalty and interpret.

Solution: The estimated probability of receiving a death sentence is 50
147

= 0.34 (34%).
Then, the estimated odds of receiving a death sentence (instead of a life imprisonment
sentence) is 50

97
= 0.516 (51.6%). Receiving a death sentence is half as likely as life im-

prisonment or receiving a life imprisonment sentence is twice as likely as receiving a death
penalty.

The odds ratio for receiving a death penalty (instead of life imprisonment) is the ratio
of the odds if black to the odds if nonblack. It is estimated as 1.47 which means blacks
are 1.47 times more likely to receive a death sentence (instead of life imprisonment) than
nonblacks. This means, the risk (odds) of death sentence (instead of life imprisonment) for
blacks increases by a factor of 1.47 as compared to nonblacks. Or the risk (odds) of death
sentence for blacks are 47% higher than the risk (odds) of a death sentence for nonblacks.

Note: For retrospective (case-control) studies, subjects are identified as cases (D) or con-
trols (D′), and it is observed whether the subjects had been exposed to the risk factor
(E) or not (E ′). Since the samplings are not from the populations of exposed and unex-
posed, and observing whether or not disease occurs (as in prospective studies), P (D|E) or
P (D|E ′), cannot be estimated.
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Disease
Exposure Present (D) Absent (D′) Total
Exposed (E) n11 n12 ?
Unexposed (E ′) n21 n22 ?
Total n+1 n+2 n

• If the odds ratio is 1.0, the odds (and thus probability) of disease is the same for
both groups (no association between an exposure and a disease).

• If the odds ratio is greater than 1.0, the odds (and thus probability) of disease is
higher among exposed than unexposed (the exposure is a risk factor).

• If the odds ratio is less than 1.0, the odds (and thus probability) of disease is lower
among exposed than unexposed (the exposure is a protective factor).

Testing for an Odds Ratio

To infer about an odds ratio θ, the sampling distribution of log(θ̂) is used due to the similar
reasons used for a relative risk. If the odds of successes are equal in the two groups, then
θ = 1 or log(θ) = 0 indicating independence (no statistical association).

The standard error of the log of an odds ratio log(θ̂) can be determined using statistical
theory as:

SE[log(θ̂)] =

√
1

N11

+
1

N12

+
1

N21

+
1

N22

which can be estimated by:

ŜE[log(θ̂)] =

√
1

n11

+
1

n12

+
1

n21

+
1

n22

.

Step 1: Hypothesis:

H0 : OR = 1⇒ log(OR) = 0. The two variables have no significant association.

H1 : OR 6= 1⇒ log(OR) 6= 0. The two variables are significantly associated.

Step 2: Obtain the critical value zα/2.

Step 3: Under H0 : log(θ) = 0, for large values of n the test statistic is defined as:

Z =
log(θ̂)− log(θ)

ŜE[log(θ̂)]
∼ N (0, 1).

Step 4: Decision: If |zcal| > zα/2, H0 can be rejected.

Step 5: Conclusion.
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Example 2.14. Test the significance of the odds ratio for the data given at example 2.13.

Solution: It is easily to calculate that θ̂ = 1.47 and log(θ̂) = 0.385. Also, the standard

error of log(θ̂) is ŜE[log(θ̂)] = 0.349.

Step 1: Hypothesis:

H0 : θ = 1⇒ log(θ) = 0. Death penalty and race have no significant association.

H1 : θ 6= 1⇒ log(θ) 6= 0. Death penalty and race have a significant association.

Step 2: Using α = 0.05, the critical value is z0.025 = 1.96.

Step 3: The calculated value of the Z test statistic is:

z =
log(θ̂)− 0√

1
28

+ 1
22

+ 1
45

+ 1
52

= 1.103.

Step 4: Decision: Since |zcal| = 1.103 < z0.025 = 1.96, H0 cannot be rejected.

Step 5: Conclusion: Therefore, there is not much evidence of association between penalty
for crime and race at 5% significance level.

Confidence Interval for an Odd Ratio

The (1− α)100% confidence interval for an odds ratio θ is given by

exp{log(θ̂)± zα/2ŜE[log(θ̂)]}.

Example 2.15. An epidemiological case-control study was reported, with cases being 537
people diagnosed with lung cancer (D) and controls being made up of 500 people with no
lung cancer (D′). One risk factor measured was whether or not the subject had smoked
a cigarette (a smoker - E, a non-smoker - E ′). The following table gives the numbers of
subjects falling in each possible combination.

Lung Cancer
Exposure Yes (D) No (D′) Total
Smoker (E) 339 149 488
Nonsmoker (E ′) 198 351 549
Total 537 500 1037

Compute a 95% confidence interval for the population odds ratio, and determine whether
or not cigarette smoking is associated with higher (or possibly lower) odds (and probabil-
ity) of developing lung cancer.
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Solution: The estimated odds ratio for developing cancer cancer in smokers and non-
smokers is θ̂ = 339(351)

149(198)
= 4.03. This implies log(θ̂) = 1.394 and its estimated standard

error is ŜE{log(θ̂)} =
√

1
339

+ 1
149

+ 1
198

+ 1
351

= 0.133. Therefore, the 95% confidence

interval for the odds ratio θ is

{exp[1.394− 1.96(0.133)], exp[1.394 + 1.96(0.133)]} = (3.110, 5.231).

That is, the risk of developing lung cancer is between 3.11 and 5.231 times higher among
smokers than non-smokers at α = 0.05.

Odds Ratios in an I × J Table

For a 2×2 table, a single number such as an odds ratio can summarize the association. For
an I × J table, it is rarely possible to summarize association by a single number without
some loss of information. However, a set of (I − 1)(J − 1) local odds ratios can describe
certain features of the association (the rest odds ratios can be determined from these odds
ratios).

Consider category i and i+ 1 of X, and category j and j + 1 of Y in an I × J contingency
table. Then, the odds ratio:

θij =
NijNi+1,j+1

Ni,j+1Ni+1,j

=
πijπi+1,j+1

πi,j+1πi+1,j

; i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1

compares the probability of category j (instead of j + 1) of Y in category i of X as com-
pared to category i+ 1 of X.

As usual, the estimated odds ratio for comparing category j (instead of j+1) of Y between
category i and i+ 1 of X is:

θ̂ij =
nijni+1,j+1

ni,j+1ni+1,j

=
pijpi+1,j+1

pi,j+1pi+1,j

; i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1.

Independence is equivalent to all odds ratios equal to 1 (that is, non-significance of all odds
ratios).

Example 2.16. Suppose 980 individuals are classified according to their favorite soft drink
preference (Fanta, Coca and Sprite) and gender as shown below.

Soft Drink
Gender Fanta Coca Sprite Total
Females 279 225 73 577
Males 165 191 47 403
Total 444 416 120 980
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By looking at the frequencies in the table, guess which gender (male or female) seems more
likely to prefer coca? Why? Find all (local) odds ratios and test their significance.

Solution: The association between gender and soft drink preference can be checked using
the chi-square or likelihood-ratio tests.

Step 1: Hypothesis:

H0 : There is no significant association between soft drink preference and gender.

H1 : Soft drink preference significantly depends on gender.

Step 2: Assuming α = 0.05, the critical value is z0.025 = 1.96.

Step 3: The z test statistic is used for testing each odds ratio:

Fanta versus Coca Fanta versus Sprite Coca versus Sprite

Odds Ratio (θ̂ij)
279(191)
225(165)

= 1.435 279(47)
73(165)

= 1.089 225(47)
73(191)

= 0.758

Log Odds Ratio {log(θ̂ij)} log(1.435) = 0.361 log(1.089) = 0.085 log(0.758) = −0.120

ŜE[log(θ̂ij)] 0.139 0.211 0.211
Test Statistic (z) 2.597 0.402 −0.569

Decision Reject H0 Do not reject H0 Do not reject H0

Step 4: Decision: Since one of the three odds ratios is significant at 5% significance level,
the null hypothesis of no significant association is rejected.

Step 5: Conclusion: Therefore, there is a significant difference in the preference of Fanta
(instead of Coca) by females as compared to males at 5% level of significance. Hence,
from this analysis, it can be concluded that:

• Females are 1.435 times more likely to prefer Fanta (instead of Coca) than that
of males.

• The odds of preferring Fanta (instead of Coca) by females is 43.5% higher than
that of males.

• Males are 0.697 times less likely to prefer Fanta (instead of Coca) than females.

• The odds of preferring Fanta (instead of Coca) by males is 30.3% lower than
that of females.

2.6 Exact Inference for Small Samples

The inferential methods of the previous sections are all large sample methods. The Pearson
chi-square statistic is only approximated by the chi-square distribution, and that approx-
imation worsens with small expected frequencies. When there are very small expected
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frequencies, the possible values of the chi-square statistic are quite discrete. For example,
for a 2× 2 table with only 4 observations in each row and column, the only possible values
of chi-square are 8, 2, and 0. It should be clear that a continuous chi-square distribution is
not a good match for a discrete distribution having only 3 values. In such cases, when n is
small, alternative methods use exact distributions rather than large sample approximations.

In this section, small sample test of independence for 2× 2 tables, which is called Fisher’s
exact inference is discussed. As described in Section 2.3.3, in poisson sampling - the sample
size is not fixed unlike multinomial sampling, and in independent multinomial (binomial)
sampling only one set of the marginal totals are fixed. In addition, in a 2× 2 table, if both
sets of the marginal total are fixed, it yields a hypergeometric distribution, that is,

P (Y11 = n11) =

(
n1+

n11

)(
n2+

n+1 − n11

)
(
n

n+1

) .

Given the marginal totals, n11 determines the other three cell counts. The exact p-value is
determined using the hypergeometric distribution. The procedure to calculate the p-value
for testing H0 : θ = 1 is as follows. Of the four marginal totals, select the smallest one and
create ordered pair of integers with that sum. Next complete the 2 × 2 table for each of
the ordered pair. Then, the two-sided p-value is given by P (Y11 ≤ n11) where n11 is the
observed frequency in cell (1, 1). For a one sided test, the p-value is found by comparing
the observed frequency n11 to its expected value µ̂11. If n11 > µ̂11, then the onesided
(right-sided alternative: H1 : θ > 1) p-value is P (Y11 ≥ µ̂11) and if n11 < µ̂11, then the
onesided (left-sided alternative: H1 : θ < 1) p-value is P (Y11 ≤ n11).

Example 2.17. Suppose A and B are two small colleges, the results of the beginning
Statistics course at each of the two colleges are given below.

Statistics
Colleges Pass Fail Total

A 8 14 22
B 1 3 4

Total 9 17 26

Do the data provide sufficient evidence to indicate that the proportion of passing Statistics
differs for the two colleges?

Solution: The hypothesis to be tested is, H0 : π1|A = π1|B, the proportion of passing
Statistics do not differ significantly for the two colleges. Since the sample sizes are small,
Fisher’s exact test will be used. Since n2+ = 4 is the smallest marginal total, the following
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ordered pairs for (n21, n22) can be determined: (0, 4), (1, 3), (2, 2), (3, 1) and (4,0). For
each pair, the 2×2 table is completed and the corresponding probability is computed using

P (Y11 = n11) =
n1+! n2+! n+1! n+2!

n! n11! n12! n21! n22!
.

For (n21, n22)=(0, 4):

9 13
⇒ P (Y11 = 9) =

22! 4! 9! 17!

26! 9! 13! 0! 4!
= 0.159197

0 4

For (n21, n22)=(1, 3):

8 14
⇒ P (Y11 = 8) =

22! 4! 9! 17!

26! 8! 14! 1! 3!
= 0.409365

1 3

For (n21, n22)=(2, 2):

7 15
⇒ P (Y11 = 7) =

22! 4! 9! 17!

26! 7! 15! 2! 2!
= 0.327492

2 2

For (n21, n22)=(3, 1):

6 16
⇒ P (Y11 = 6) =

22! 4! 9! 17!

26! 6! 16! 3! 1!
= 0.095518

3 1

For (n21, n22)=(4, 0):

5 17
⇒ P (Y11 = 5) =

22! 4! 9! 17!

26! 5! 17! 4! 0!
= 0.008428

4 0

Since the observed frequency n11 = 8, the two sided p-value is P (Y11 ≤ 8) = P (Y11 =
5) + P (Y11 = 6) + P (Y11 = 7) + P (Y11 = 8) = 1. Hence, there is not enough evidence to
conclude that the proportion of passing Statistics differs for the two colleges.

Since the observed frequency n11 = 8 > µ̂11 = 7.6, the alternative hypothesis is (H1 :
π1|A > π1|B). Then the onesided p-value is P (Y11 ≥ 7.6) = P (Y11 = 8) + P (Y11 = 9) =
0.159197 + 0.409365 = 0.568562. Again, there is not enough evidence to indicate that the
probability of passing Statistics is higher at college A than at college B.

2.7 Measures of Linear Association for Ordinal Vari-

ables

In situations where both the explanatory and response variables are ordinal, the X2 and
G2 tests ignore the fact that the levels of the variables have distinct orderings. When
both variables are ordinal, there will be an interest to examine whether individuals with
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high levels of an explanatory variable tend to have high (low) levels of the corresponding
response variable. For instance, suppose that the explanatory variable is dose, with in-
creasing (possibly numeric) levels of amount of drug given to a patient, and the response
variable is categorical measuring the degree of improvement. Then, it is essential to deter-
mine if as dose increases, the degree of improvement increases.

Many measures have been developed for this type of ordinal variables classification. Most
analytical techniques are based on concordant and discordant pairs. A concordant pair in-
volves a pair where a subject is higher on both variables than other subject. A discordant
pair is a pair where a subject is higher on one variable, but lower on the other variable,
than other subject. If a pair is said to be tied if a subject is in the same category of a
variable.

More concordant pairs than discordant pairs indicates a positive association between the
two variables whereas more discordant pairs than concordant pairs indicates negative as-
sociation between the variables.

Consider the following table

Income Level
Education Level Low High Total
High School N11 N12

College N21 N22

Total

Looking at the above table, it is easy to observe that income category is ordered by low
and high. Similarly education category is ordered, with education ending at high school
being the low category and education ending at college being the high category. All N11

observations represent individuals in low income and low education category and all N22

observations represent individuals in high income and high education category. Thus, there
are C = N11N22 concordant pairs. On the other hand, all N12 observations are higher on the
income variable and lower on the education variable, while all N21 observations are lower
on the income variable and higher on the education variable. Thus, there are D = N12N21

discordant pairs.

2.7.1 The Gamma Measure

The strength of the association can be measured by calculating the difference in the pro-
portions of concordant and discordant pairs. This is called the gamma (γ) measure which
is defined as

γ =
C

C +D
− D

C +D
=
C −D
C +D

.

Since γ represents the difference in proportions, its value is between -1 and 1. A positive
value of gamma indicates a positive association while a negative value of gamma indicates
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a negative association. A value close to zero indicates weak association.

Let us consider again the above 2×2 table. Let n11 = 25, n12 = 12, n21 = 11 and n22 = 14.
The number of concordant pais is Ĉ = n11n22 = 25(14) = 350; the number of discordant

pairs is D̂ = n12n21 = 12(11) = 132. Therefore, γ̂ = 0.45 which indicates that the associa-
tion between education level and income is medium-positive.

For an I × J table, the number of concordant pairs is C =
I∑
i=1

J∑
j=1

Nij(
I∑

h=i+1

J∑
k=j+1

Nhk) and

the number of discordant pairs is D =
I∑
i=1

J∑
j=1

Nij(
I∑

h=i+1

j−1∑
k=1

Nhk).

Example 2.18. Find the gamma measure of association for the following cross-classification
of HIV/AIDS patients by Clinical Stage and Functional Status.

Functional Status
Clinical Stage Bedridden Ambulatory Working Total
Stage I 0 23 324 347
Stage II 11 96 407 514
Stage III 28 233 235 496
Stage IV 18 52 37 107
Total 57 404 1003 1464

Solution: The total number of concordant pairs is

Ĉ =0(96 + 407 + 233 + 235 + 52 + 37) + 23(407 + 235 + 37)

+ 11(233 + 235 + 52 + 37) + 96(235 + 37) + 28(52 + 37) + 233(37)

=58969

The total number of discordant pairs is

D̂ =23(11 + 28 + 18) + 324(11 + 96 + 28 + 233 + 18 + 52) + 96(28 + 18)

+ 407(28 + 233 + 18 + 52) + 233(18) + 235(18 + 52)

=303000

In this example, Ĉ < D̂, suggesting a tendency for low clinical stage to occur with high
functional status of patients and higher clinical stages with lower functional status.

γ̂ =
Ĉ − D̂
Ĉ + D̂

=
58969− 303000

58969 + 303000
= −0.674

Of the untied pairs, the proportion of concordant pairs is 0.674 lower than the proportion of
discordant pairs. This indicates that there is a medium negative linear association between
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clinical stage and functional status of HIV/AIDS patients. That is, as the clinical stage
(severity) of the patient increases, the functional status of the patient decreases and vice
versa.

2.7.2 The Kendall’s tau-b

Kendall’s tau-b, denoted τb, is a more sensitive measure of association between two ordinal
variables. The formula for calculating Kendall’s tau-b τb is:

τb =
C −D

0.5

√√√√(N2 −
I∑
i=1

N2
i+

)(
N2 −

J∑
j=1

N2
+j

) .

The estimated value of Kendall’s tau-b τ̂b is also obtained by substituting the sample
frequencies in place of the population frequencies as:

τ̂b =
Ĉ − D̂

0.5

√√√√(n2 −
I∑
i=1

n2
i+

)(
n2 −

J∑
j=1

n2
+j

) .

This measure has the advantage of adjusting for ties. The result of adjusting for ties is
that the value of τb is always a little closer to 0 than the corresponding value of gamma.

Example 2.19. Find the Kendall’s tau-b τb for the data given in example 2.18.

Solution:

τ̂b =
58969− 303000

0.5
√

[14642 − (572 + 4042 + 10032)][14642 − (3472 + 5142 + 4962 + 1072)]

=
−244031

0.5
√

(2143296− 1172474)(2143296− 642070)

= −0.404

2.8 Association in Three-Way Tables

An important part of most studies, especially observational studies, is the choice of control
variables. In studying the effect of X on Y , one should control any covariate that can
influence that relationship. This involves using some mechanism to hold the covariate
constant. Otherwise, an observed effect of X on Y may actually reflect effects of that
covariate on both X and Y . The relationship between X and Y then shows confounding.
Experimental studies can remove effects of confounding covariates by randomly assigning
subjects to different levels of X, but this is not possible with observational studies.
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2.8.1 Partial Tables

The variable Z can be controlled by studying the XY relationship at fixed levels of Z.
Two-way cross-sectional slices, called partial tables, of the three-way contingency table
cross-classify X and Y at separate categories of Z. Thsese partial tables display the XY
relationship while removing the effect of Z by holding its value constant.

The two-way contingency table obtained by combining the partial tables is called the XY
marginal table. Each cell count in the marginal table is a sum of counts from the same
location in the partial tables. The marginal table, rather than controlling Z, ignores it.
The marginal table contains no information about Z. It is simply a two-way table relating
X and Y but may reflect the effects of Z on X and Y .

The associations in partial tables are called conditional associations, because they refer to
the effect of X on Y conditional on fixing Z at some level. Conditional associations in
partial tables can be quite different from associations in marginal tables.

Example 2.20. Consider the following cross-classification of subjects by gender (Male,
Female), smoking (Yes, No) and occurrence of lung cancer (Yes, No).

Lung Cancer
Gender Smoking Yes No Lung Cancer (%)
Male Yes 45 100 31.0345

No 13 102 11.3044
Female Yes 10 402 2.4272

No 0 12 0.0000
Total Yes 55 502 9.8743

No 13 114 10.2362

For each combination of gender and smoking, the above table displays the percentage of
subjects who developed lung cancer. These describe the conditional associations. When
the subjects were male, lung cancer was occurred 31.0345%− 11.3044% = 19.7301% more
often for smokers than for non-smokers. When the subjects were female, lung cancer was
occurred 2.4272% − 0.0000% = 2.4272% more often for smokers than for non-smokers.
Controlling for subjects’ gender by keeping it fixed, lung cancer was occurred more often
on smokers than on non-smokers.

Overall, 9.8743% of smokers and 10.2362% of non-smokers developed lung cancer. Ignoring
subjects’ gender, lung cancer was occurred more often on non-smokers than on smokers.
The association reverses direction compared to the partial tables. Therefore, it can be mis-
leading to analyze only marginal tables of a multi-way contingency table as this example
illustrates.
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The result that a marginal association can have a different direction from each conditional
association is called Simpson’s paradox. It applies to quantitative as well as categorical
variables.

2.8.2 Conditional and Marginal Odds Ratios

Odds ratios can describe marginal and conditional associations. Consider a 2 × 2 × K
tables, where K denotes the number of categories of a control variable, Z. Within a fixed
category k of Z, the odds ratio

θ11(k) =
N11kN22k

N12kN21k

=
π11kπ22k

π12kπ21k

describes conditional XY association in partial table k. The odds ratios for the K partial
tables are called XY conditional odds ratios. These can be quite different from marginal
odds ratios. The XY marginal odds ratio is

θ11 =
N11+N22+

N12+N21+

=
π11+π22+

π12+π21+

.

Example 2.21. The conditional odds ratios for males and females in example 2.20 are

θ̂(1) =
45(102)

13(100)
= 3.53 and θ̂(2) =

10(12)

0(402)
≈ ∞,

respectively. The risk of developing lung cancer for male smokers is 3.53 times higher
than that of non-smokers. Yet within each gender category, those odds were smaller for
non-smokers. Whereas the marginal odds ratio

θ̂ =
55(114)

13(502)
= 0.96

indicates the risk of developing lung cancer is 4% lower for smokers than for non-smokers.
This reversal in the association after controlling for gender illustrates Simpson’s paradox.

For an I × J ×K table, in general, the conditional odds ratio within a fixed category k of
Z is given by

θij(k) =
NijkNi+1,j+1,k

Ni,j+1,kNi+1,j,k

=
πijkπi+1,j+1,k

πi,j+1,kπi+1,j,k

; i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1.

2.8.3 Marginal and Conditional Independence

An I×J×K table describes the relationship between X and Y , controlling for Z. If X and
Y are independent in partial table k, then X and Y are called conditionally independent at
level k of Z. For a response Y , this means P (Y = j|X = i, Z = k) = P (Y = j|Z = k) for
all i and j. More generally, X and Y are said to be conditionally independent given Z when
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they are conditionally independent at every level of Z, that is, when the above equation
holds for all k. Then, given Z, Y does not depend on X. In other words, conditional
independence is equivalent to

πijk =
πi+kπ+jk

π++k

, for all i, j and k.

But, conditional independence does not imply marginal independence.

An I × J × K table has homogeneous XY association when θij(1) = θij(2) = · · · = θij(K)

for all i and j. Then, the effect of X on Y is the same at each category of Z. Conditional
independence of X and Y is the special case in which each θij(k) = 1.

Under homogeneous XY association, homogeneity also holds for the other associations.
For instance, the conditional odds ratio between two categories of X and two categories
of Z is identical at each category of Y . For the odds ratio, homogeneous association is a
symmetric property. It applies to any pair of variables viewed across the categories of the
third. When it occurs, there is said to be no interaction between two variables in their
effects on the other variable. When interaction exists, the conditional odds ratio for any
pair of variables changes across categories of the third.

Example 2.22. For the lung cancer data on example 2.20, θ̂(1) = 3.53 and θ̂(2) =∞. The
values are not close, but the second estimate is unstable because of the zero cell count.
Adding 0.1 to each cell count, θ̂(2) = 3.04. Because θ̂(2) is unstable and because further
variation occurs from sampling variability, these partial tables do not necessarily contradict
homogeneous association in a population.

2.9 Chi-square Test of Homogeneity

The chi-square test can be used to test the equality (homogeneity) of population propor-
tions for three or more groups. In this case, samples are selected from, say J , different
groups and the interest is whether or not the proportion of a certain characteristic is the
same for each population. Thus, the null hypothesis to be tested is H0 : π1 = π2 = · · · = πJ .
Under H0, the usual chi-square and likelihood ratio test statistics are used. Rejecting of
the null hypothesis means at least one of the proportions is significantly different from the
others.

Example 2.23. A researcher took a random sample of 293 students from five departments
(53 from department A, 65 from department B, 50 from department C, 65 from department
D, and 60 from department E) of a certain university to determine if they passed a statistics
course (Yes, No). The cross-tabulated data is as shown below.
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Department
Pass A B C D E Total
Yes 50 60 49 56 20 235
No 3 5 1 9 40 58

Total 53 65 50 65 60 293

Is there sufficient evidence to reject the hypothesis that the proportion of passing statistics
course is the same among the five departments?

Solution: The null hypothesis to be tested hear is H0 : πA = πB = πC = πD = πE. Of the
entire 293 students, since 235 of them passed the course, the overall sample proportion of
passing students is 235/293 = 0.802. If H0 : πA = πB = πC = πD = πE, is true, the best
estimate of the passing proportion is 0.802. Therefore, the expected number of passing
students in department A, B, C, D and E are µ̂A = 53(0.802) = 42.506, µ̂B = 65(0.802) =
52.130, µ̂C = 50(0.802) = 40.100, µ̂D = 65(0.802) = 52.130 and µ̂E = 60(0.802) = 48.120,
respectively. Note that these expected values are the usual ones.

Department
Pass A B C D E Total
Yes 50 (42.506) 60 (52.130) 49 (40.100) 56 (52.130) 20 (48.120) 235
No 3 (10.491) 5 (12.867) 1 (9.898) 9 (12.867) 40 (11.877) 58

Total 53 65 50 65 60 293

Thus, the values of both test statistics are X2 = 107.113 and G2 = 94.786. Since χ2
0.05(4) =

2.1318, the null hypothesis of homogeneous (equal) passing proportions in statistics course
among the five departments is rejected. This means the proportion of passing the course
in at least one department is significantly different from the others.

2.10 Chi-square Test of Goodness-of-fit

Again, both the chi-square and likelihood-ratio tests are also used for addressing the ques-
tion of whether a certain data follow any pattern, or fit a specified (assumed) probability
distribution such as the binomial or multinomial. In such case, the observed frequencies
are compared the expected frequencies of the probability distribution of interest. These
tests are called goodness-of-fit tests.

Multinomial (Binomial) Probability Distribution

Suppose a sample of n subjects are classified based on a multinomial variable with J cat-
egories in which nj of them are in category j; j = 1, 2, · · · , J of the variable. Consider

the null hypothesis H0 : πj = πj0; j = 1, 2, · · · , J provided that
J∑
i=1

πj = 1. This null

hypothesis states that the population follows a multinomial distribution with the specified
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probabilities π10, π20, · · · , and πJ0 of the J categories. Then, the alternative one states
the population does not follow a multinomial distribution with the specified probabilities.

Under H0, the expected values of {nj} are µj = nπj0; j = 1, 2, · · · , J . Thus, the Pearson
chi-squared and likelihood-ratio statistics are

X2 =
J∑
j=1

(nj − µj)2

µj
∼ χ2(J − 1) and G2 = 2

J∑
j=1

nj log

(
nj
µj

)
∼ χ2(J − 1).

For fixed J , as n increases the distribution of Pearson X2 usually converges to chi-squared
more quickly than that of G2. The chi-squared approximation is usually poor for G2 when
n/J < 5.

Example 2.24. Among its many applications, Pearson’s test was used in genetics to test
Mendel’s theories of natural inheritance. Mendel crossed pea plants of pure yellow strain
with plants of pure green strain. He predicted that second-generation hybrid seeds would
be 75% yellow and 25% green, yellow being the dominant strain. One experiment produced
n = 8023 seeds, of which n1 = 6022 were yellow and n2 = 2001 were green. Test Mendel’s
hypothesis using both the Pearson and likelihood-ratio tests.

Solution: The hypothesis to be tested is H0 : π10 = 0.75, π20 = 0.25 {that is, the
population proportions of second-generation hybrid seeds are 75% yellow and 25% green
(multinomial); or the population proportion second-generation hybrid seeds are 75% yel-
low (binomial), or the population proportion second-generation hybrid seeds are 25% green
(binomial)}.

Thus, µ1 = nπ10 = 6017.25 and µ2 = nπ20 = 2005.75. Both the Pearson X2 and likelihood-
ratio G2 tests have values 0.015 which is less than χ2

0.05(1) = 3.84. Hence, the experiment
does not contradict Mendel’s hypothesis which means second-generation hybrid seeds will
not be significantly different from 75% yellow and 25% green.

Consider the null hypothesis that cell probabilities in two-way tables equal to certain
specified values πij0; i = 1, 2, · · · , I and j = 1, 2, · · · , J . For a sample of n observations
with cell counts {nij}, the expected frequencies are {µij = nπij0} when H0 is true. This
notation refers to two-way tables, but similar notions apply to a set of counts for multi-way
tables. Consequently, the Pearson chi-squared and likelihood-ratio statistics for a two-way
table are:

X2 =
I∑
i=1

J∑
j=1

(nij − µij)2

µij
∼ χ2(IJ − 1) and G2 = 2

I∑
i=1

J∑
j=1

nij log

(
nij
µij

)
∼ χ2(IJ − 1).

respectively. As said previously, the chi-squared approximation is also poor hear for G2

when n/IJ < 5.
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Chapter 3

Logistic Regression

3.1 Objective and Learning Outcomes

In a linear regression model, it is implicitly assumed that the response variable is contin-
uous following a normal distribution. There are also cases where the response variable is
categorical (binary, multinomial, ordinal or count) in nature. This chapter deals with the
case where the response variable is binary with outcomes, say, success and failure. There-
fore, a statistical modeling approach used to describe the relationship of such a binary
response variable to one or more explanatory variable(s) is called logistic regression.

Upon completion of this chapter, students are expected to:

• Understand why the usual linear regression model is not appropriate for a categorical
response variable.

• Fit a logistic regression and interpret the parameter estimates in terms of odds ratio.

• Conduct inferences about the overall significance of the model and the individual
parameters.

• Construct confidence intervals for the parameters, odds ratio and probability of suc-
cess.

3.2 Binary Logistic Regression

A binary logistic regression predicts the probability of success in a dichotomous dependent
variable, for example, whether a person will develop a disease or whether a certain patient
will survive a surgical procedure. There could be one or more independent variables which
can be, as usual, either continuous, categorical or both.
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3.2.1 Why Not the Linear Regression?

Consider a regression model with a binary response variable yi = α + βxi + εi where xi is
the study hours per day of a student, and yi = 1 if the student passed Statistics course
and yi = 0 if the student failed the course.

Let π(xi) denote the conditional probability that the student will pass Statistics course
given the study hours, that is, P (Yi = 1|Xi = xi) where 0 ≤ π(xi) ≤ 1. Then, the above
model can be written as π(xi) = α + βxi + εi which looks like a typical linear regression
model. Since the response variable is binary, it is called linear probability model (LPM).

It would seem the usual least squares estimation can be applied, but, it poses several
problems. Obviously, since the response variable Yi takes the value 1 with probability
π(xi) and 0 with probability 1− π(xi), the basic random variable has a point-binomial or
Bernoulli probability distribution, P (Yi = yi) = π(xi)

yi [1−π(xi)]
1−yi ; yi = 0, 1. Therefore,

the assumption of normality for εi is not fulfilled for a linear probability model. Because
εi = yi − α − βxi, like yi, the disturbance εi also takes only two values; that is, it takes
the value 1− (α + βxi) with probability π(xi) and the value −(α + βxi) with probability
1− π(xi). Hence, the errors follow the Bernoulli distribution.

yi εi Probability
1 1− α− βxi π(xi)
0 −α− βxi 1− π(xi)

Total 1

In fact, the nonfulfillment of the normality assumption may not be so critical because the
least squares estimation does not require the disturbances to be normally distributed, the
least squares point estimates still remain unbiased. The errors are assumed to be normally
distributed for the purpose of statistical inference, but this assumption is not necessary if
the objective is point estimation. Besides, as the sample size increases indefinitely, statisti-
cal theory shows that the least squares estimators tend to be normally distributed generally.

Another problem of least squares is that the errors are not homoscedastic. This is, how-
ever, not surprising. For the distribution of the error term, applying the definition of
variance for a Bernoulli distribution, var(εi) = π(xi)[1− π(xi)]. Therefore, the variance of
εi ultimately depends on the values of xi. Hence, the error variance is heteroscedastic (not
homoscedastic). It is known, in the presence of heteroscedasticity, least squares estimators,
although unbiased, they are not efficient, that is, they do not have minimum variance. But
the problem of heteroscedasticity, like the problem of nonnormality, is not insurmountable.

The real problem with the least squares estimation of the linear probability model is that
it may predict impossible values (negative values or values larger than 1). There is no
guarantee that π(xi) will necessarily fulfill the restriction 0 ≤ π(xi) ≤ 1. Due to these
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problems, the linear probability model is not appropriate for modeling a binary response
variable.

3.2.2 The Logistic Function

Recall the logistic function is

f(z) =
1

1 + exp(−z)
; −∞ < z <∞.

When z = −∞, f(−∞) = 0 and when z =∞, f(∞) = 1. Note also that f(0) = 1
2
.

Figure 3.1: Plot of the Logistic Function

Thus, as the figure describes the range of f(z) is between 0 and 1 (that is, 0 ≤ f(z) ≤ 1)
regardless of the value of z. Therefore, it is suitable for use as a probability model. Hence,
to indicate that f(z) is a probability value, the notation π(z) can be used instead. That
is,

π(z) =
1

1 + exp(−z)
; −∞ < z <∞

where π(z) = P (Y = 1|Z = z).

3.2.3 The Simple Logistic Regression

To begin with the simplest model, consider the case of a binary outcome and a single
predictor variable x. Hence, in the logistic function, z is expressed as a function (mostly
linear function) of the explanatory variable. That is, zi = g(xi) = α + βxi. As a result,
the simple logistic probability model is:

π(xi) =
1

1 + exp[−(α + βxi)]

where π(xi) = P (Yi = 1|Xi = xi) = 1− P (Yi = 0|Xi = xi). It can also be written as

π(xi) =
exp(α + βxi)

1 + exp(α + βxi)
.
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As can be seen from this model, the relationship between the response variable (probability
of success) and the explanatory variable is not linear. However, it can be linearized by
using different transformations of the probability of success and the most common one is
called a logit or log-odds transformation.

The Logit Transformation

In the previous chapter, odds is defined as the ratio of the probability of success to the prob-
ability of failure. Hence, the odds of successes at a particular value xi of the explanatory
variable is

Ω(xi) =
π(xi)

1− π(xi)
.

Thus, the odds of successes for a simple logistic regression model is Ω(xi) = exp(α+ βxi).
If Ω(xi) = 1, then a success is as likely as a failure at the particular value xi of the ex-
planatory variable. If Ω(xi) > 1, then log Ω(xi) > 0, a success is more likely to occur than
a failure. On the other hand, if Ω(xi) < 1, then log Ω(xi) < 0, a success is less likely than
a failure.

The logit of the probability of success is given by the natural logarithm of the odds of
successes. Therefore, the logit of the probability of success is a linear function of the
explanatory variable. Thus, the simple logistic model is

logit π(xi) = log

[
π(xi)

1− π(xi)

]
= α + βxi

This is particulary called the logit model as it uses the logit transformation or the log-odds
scaling (or logit link function) which is a reasonable choice for binary response models.

To clarify the relationship between probabilities, odds, and the natural log of the odds
(logit), the following table includes probability values along with their corresponding odds
as well as the natural log of the odds, log(odds). The table demonstrates that as the
probability gets smaller and approaches 0, the odds also approach 0 while the log odds
approach −∞(negative infinity), and as the probability gets larger and approaches 1, the
odds also get larger while the log odds approach +∞(positive infinity). Therefore, while
probabilities can theoretically vary from 0 to 1 with a midpoint of 0.5, the corresponding
odds can theoretically vary from 0 to +∞ with 1 corresponding to the probability midpoint,
and the natural log of the odds can theoretically vary from +∞ to +∞ with 0 corresponding
to the probability midpoint.
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π(xi) 1− π(xi) Ω(xi) logit π(xi)
0.001 0.999 0.001 -6.908
0.010 0.990 0.010 -4.605
0.100 0.900 0.111 -2.198
0.200 0.800 0.250 -1.386
0.300 0.700 0.429 -0.846
0.400 0.600 0.667 -0.405
0.500 0.500 1.000 0.000
0.600 0.400 1.500 0.405
0.700 0.300 2.333 0.847
0.800 0.200 4.000 1.386
0.900 0.100 9.000 2.197
0.990 0.010 99.000 4.595
0.999 0.001 999.000 6.907

Thus, the range of the log(odds) more closely resembles the standard normal distribution
in that it is unbounded, has a midpoint of 0, and is symmetric around the midpoint.

There are also other models that are used in practice. The probit model or the comple-
mentary log-log model might be appropriate when the logit model does not fit the data
well.

Interpretation of the Parameters

The parameters, α and β, are the intercept and slope of the logit model, respectively. Be-
cause the predicted value, probability, in logistic regression is different from the predicted
value, mean, in linear regression, the interpretations of the intercept, α, and slope, β, are
also somewhat different as these must be interpreted in the context of the predicted re-
sponse.

The logit model is monotone depending on the sign of the parameter β. Its sign deter-
mines whether the probability of success is increasing or decreasing, as shown in figure 3.2,
when the value of the explanatory variable increases. When the parameter β is zero, Y is
independent of X. Then, π(xi) = exp(α)

1+exp(α)
which is identical for all xi, so the curve becomes

a straight (horizontal) line.

The slope parameter of a logit model can be interpreted in terms of an odds ratio. From
logit π(xi) = α + βxi, an odds is an exponential function of xi. This provides a basic
interpretation for the magnitude of the slope parameter β. The odds at xi is Ω(xi) =
exp(α+βxi) and the odds at xi + 1 is Ω(xi + 1) = exp[α+β(xi + 1)]. Thus, the odds ratio
is

θ =
Ω(xi + 1)

Ω(xi)
= exp(β).
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Figure 3.2: Plot of the Logistic Probability

This value is the multiplicative effect of the odds of successes due to a unit change in the
explanatory variable. That is, for every one unit increase in xi, the odds changes by a factor
of exp(β). Similarly, for an m units increase in xi, say xi +m versus xi, the corresponding
odds ratio becomes exp(mβ).

Also, the parameter β determines the slope (rate of change or marginal effect) of the
probability of success at a certain value of the explanatory variable. This rate of change
(marginal effect) at a particular xi value is described by drawing a straight line tangent to
the curve at that point. That line will have a slope of π(xi)[1 − π(xi)]β. This is the rate
of change (slope or marginal effect) of π(xi) at a particular value of xi. For example, the
line tangent to the curve at xi for which π(xi) = 0.5 has a slope (0.5)(1−0.5)β = 0.25β. If
π(xi) is 0.9 or 0.1, it has a marginal effect 0.09β. As the probability of success approaches
either 0 or 1, the rate of increment (decrement) of the curve approaches to 0. The steepest
slope of the curve is attained at xi for which the probability of success is 50%. Thus,
solving

1

1 + exp[−(α + βxi)]
= 0.5

for xi implies xi = −α
β
. This xi value is called medial effective level (EL50). At this value,

each outcome has a 50% chance of occurring.

The intercept α is, not usually of particular interest, used to obtain the odds (probabil-
ity) at xi = 0. Also, by centering the explanatory variable at 0 {that is, replacing xi by

(xi − x̄)}, α becomes the logit at that mean, and thus π(x̄) = exp(α)
1+exp(α)

.
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The estimated logistic regression model is written as:

logit π̂(xi) = log

[
π̂(xi)

1− π̂(xi)

]
= α̂ + β̂xi.

Example 3.1. For studying the effect of age (continuous variable) on the occurrence of
hypertension (coded as 1 for presence and 0 for absence), a sample of 13 individuals were
examined. The ages (in years) of persons having hypertension are 45, 60, 60, 60, 55, 55,
20 and those who do not have hypertension are 20, 20, 18, 30, 55, 18. For these data, the
following parameter estimates were obtained.

Variable Parameter Estimate
Intercept -3.4648
Age 0.0931

1. Write the model that allows the prediction of the probability of having hypertension
at a given age.

2. What is the estimated probability of having hypertension at the minimum and max-
imum ages of this study.

3. What is the estimated probability of having hypertension at the age of 35. Also find
the odds of having hypertension at this age.

4. Find the estimated probability of success at the sample mean and determine the
incremental change (marginal effect) at that point.

5. Write out the estimated logit model.

6. Find the estimated odds ratio of having hypertension and interpret.

7. Determine the estimated median effective level (EL50) and interpret.

Solution: Let Y= hypertension and X= age. Then π̂(xi) = P̂ (Y = 1|xi) is the estimated
probability of having hypertension, Y = 1, given the age xi of an individual i.

1. The estimated probability of hypertension at a given age is given by:

π̂(xi) =
exp(−3.4648 + 0.0931xi)

1 + exp(−3.4648 + 0.0931xi)
.

2. The estimated probability of having hypertension at the age of 35 years is π̂(35) =

0.4486 and its estimated odds is Ω̂(35) = 0.8136.

3. The mean age of the sample is 39.69 years. The estimated probability of having
hypertension at this mean age is π̂(39.69) = 0.5573 and the rate of change (marginal
effect) at this mean value is π̂(39.69)[1− π̂(39.69)]β̂ = 0.5573(1− 0.5573)(0.0931) =
0.0230. The probability of having hypertension at the age of 39.69 years increases by
2.30%.
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4. The estimated logit model is written as

log

[
π̂(xi)

1− π̂(xi)

]
= −3.4648 + 0.0931xi.

5. The estimated odds ratio is exp(β̂) = exp(0.0931) = 1.0976. Hence, the odds (risk)
of having hypertension is 1.0976 times larger for every year older an individual is.
In other words, as the age of an individual increases by one year, the odds (risk) of
developing hypertension increases by a factor of 1.0976. Or the odds (risk) of having
hypertension increases by [exp(0.0931)− 1]× 100% = 9.76% every year.

6. The estimated median effective level, the estimated age in years at which an individ-
ual has a 50% chance of having hypertension, is ÊL50 = −α̂/β̂ = −(−3.4648)/0.0931 =
37.2159.

3.2.4 Logit Models with Categorical Predictors

Like ordinary regression, logistic regression extends to include qualitative explanatory vari-
ables, often called factors.

Binary Predictors

For simplicity, let us consider a binary predictor, X, representing an exposure which refers
to a risk factor such as smoking (smoker, nonsmoker) or patient characteristics like sex
(male, female), residence (urban, rural). The simple logit model is

log

[
π(xi)

1− π(xi)

]
= α + βxi where xi =

{
1, exposed group;
0, unexposed group.

From this model, the odds in the exposed group is given by Ω(1) = exp(α + β) and the
odds in the unexposed group is Ω(0) = exp(α). This implies, exp(β) as the odds ratio
associated with an exposure (exposed xi = 1 versus unexposed xi = 0), which is equivalent
to the odds ratio in a 2× 2 table.

In other words, the estimates of the parameters of a logit model for a 2 × 2 table can be
easily determined from the cell frequencies. Consider the 2× 2 table below. Setting xi = 0

Response
Exposure Success (1) Failure (0) Total
Exposed (1) n11 n10 n1+

Unexposed (0) n01 n00 n0+

Total n+1 n+0 n
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for the unexposed group and then solving for α gives the estimated intercept of the logit
model in terms of the natural logarithm of the odds of successes in the unexposed group.
That is,

α̂ = log

[
π̂(0)

1− π̂(0)

]
= log

(
n01

n00

)
.

Similarly, the estimate of the slope of the logit model is derived as the natural logarithm
of the odds ratio associated with an exposure by setting xi = 1 for the exposed group,

β̂ = log

[
π̂(1)

1− π̂(1)

]
− α̂ = log

[
π̂(1)

1− π̂(1)

]
−
[

π̂(0)

1− π̂(0)

]
= log

(
n11n00

n10n01

)
.

As discussed before, the marginal effect of a continuous explanatory variable, which is very
useful when interpreting a binary logit model, is the partial derivative of the probability
of success with respect to that variable.

Similarly, the discrete change of a binary explanatory variable is the difference in estimated
probabilities when the variable value is 1 and when it is 0. Note that marginal effects and
discrete changes look similar but are not equal in conceptual and numerical senses.

Example 3.2. In a study of cigarette smoking and risk of lung cancer, a logistic regression
analysis is used to determine how much greater the odds are finding cases of the diseases
among subjects who have ever smoked than among those who have never smoked.

Lung Cancer
Smoking Case (1) Control (0) Total
Yes (1) 77 123 200
No (0) 54 171 225
Total 131 294 425

Given the parameter estimates from a statistical software as follows:

Variable Parameter Estimate
Intercept -1.1527
Smoking 0.6843

Write out the estimated model and interpret the slope estimate. Also find the discrete
change.

Solution: Let Y= lung cancer where

yi =

{
1, if the subject develops lung cancer - Case;
0, otherwise (if the subject does not develop lung cancer) - Control.

For the explanatory variable, let X= smoking status where

xi =

{
1, if the subject had ever smoked - Smoker;
0, otherwise (if the subject had never smoked) - Nonsmoker.
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Thus, π̂(xi) is the estimated probability of developing lung cancer, Y = 1, given the
smoking status, xi = 1 for smokers and xi = 0 for non-smokers. The parameter estimates
can also be obtained manually. The estimates are

α̂ = log

(
n01

n00

)
= log

(
54

171

)
= −1.1527

and

β̂ = log

(
n11n00

n10n01

)
= log

[
77(171)

123(54)

]
= 0.6843.

Thus, the estimated model is

log

[
π̂(xi)

1− π̂(xi)

]
= −1.1527 + 0.6843xi.

The estimated odds ratio is exp(0.6843) = 1.9824. Thus, smokers are 1.9824 times (98.24%)
more likely to develop lung cancer as compared to nonsmokers. Or the odds (risk) of de-
veloping lung cancer is 98.24% higher for smokers than for nonsmokers {the odds (risk) of
developing lung cancer among smokers is 98.24% higher than that of among nonsmokers}.

The discrete change is π̂(1)− π̂(0) = 0.3850− 0.2400 = 0.1450. The probability of devel-
oping lung cancer increases by 14.50% for smokers relative to nonsmokers.

Example 3.3. The following table presents the cross-classification of 1464 HIV/AIDS
patients involved in Seid et al. (2014) study by defaulting (Yes, No) and gender (Female,
Male).

Defaulter
Gender Yes (1) No (0) Total
Female (1) 189 741 930
Male (0) 142 392 534
Total 331 1133 1464

The parameter estimates are provided in the following table:

Variable Parameter Estimate
Intercept -1.0154
Smoking -0.3508

Write out the estimated model and interpret the estimated slope.

Solution: Let Y= defaulter where yi = 1 if the patient was defaulted from the HAART
treatment and yi = 0 otherwise (if the patient was active on the treatment). Let X=
gender of the patient where xi = 1 if the patient is female and xi = 0 otherwise (if the
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patient is male).

Then π̂(xi) is the estimated probability of the patient being defaulted from the HAART
treatment. The estimated model is

log

[
π̂(xi)

1− π̂(xi)

]
= −1.0154− 0.3508xi.

The odds ratio is exp(−0.3508) = 0.7041. This means that female patients are 0.7041 times
(29.59%) less likely to default from HAART treatment as compared to male patients. Or,
the risk of being defaulted is 29.59% lower for female patients than for male patients (the
risk of being defaulted for male patients is 42.02% higher than the risk of being defaulted
for female patients).

Polytomous Explanatory Variables

If there is a categorical explanatory variable with more than two categories, then it is inap-
propriate to include it in the model as if it was quantitative. This is because the codes used
to represent the various categories are merely identifiers and have no numeric significance.
In such case, a set of binary variables, called design (dummy, indicator) variables, should
be created to represent such a polytomuous variable.

Suppose, for example, that one of the explanatory variable is marital status with three
categories: ”Single”, ”Married”, ”Separated”. In this case, taking one of the categories as
a reference (comparison group), two design variables (d1 and d2) are required to represent
marital status in a regression model. For example, if the category ”Single” is taken as a
reference, the two design variables, d1 and d2 are set to 0; when the subject is ”Married”,
d1 is set to 1 while d2 is still 0; when the marital status of the subject is ”Separated”,
d1 = 0 and d2 = 1 are used. The following table shows this example of design variables for
marital status:

Design Variables
Marital Status Married (d1) Separated (d2)
Single 0 0
Married 1 0
Separated 0 1

In general, if a polytomuous variable X has m categories, then m− 1 design variables are
needed. The m− 1 design variables are denoted as du and the coefficients of those design
variables are denoted as βu, u = 1, 2, · · · ,m− 1. Thus, the logit model would be:

logit π̂(xi) = log

[
π̂(xi)

1− π̂(xi)

]
= α + β1di1 + β2di2 + · · ·+ βm−1di,m−1.

Therefore, when there is a binary response variable and a polytomous explanatory variable,
the data can be presented using a 2×m table. Taking one of the category of the explanatory
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variable as a reference, m−1 stratified 2×2 tables can be constructed. Then the parameter
estimates corresponding to each design variable can be easily determined from each table.

If category m is taken as a reference, then α̂ = log
(
nm1

nm0

)
and β̂u = log

(
nu1nm0

nu0nm1

)
; u =

1, 2, · · · ,m− 1.

Example 3.4. Given the following cross-classified data on race and coronary heart disease
for 100 subjects.

Race
CHD White Black Hispanic Other Total
Present (1) 5 20 15 10 50
Absent (0) 20 10 10 10 50
Total 25 30 25 20 100

Software provides the following parameter estimates.

Variable Parameter Estimate
Intercept -1.386
Black (d1) 2.079
Hispanic (d2) 1.792
Other (d3) 1.386

Specify the design variables for race using ”white” as a reference group. Calculate the
parameter estimates manually from the cell counts of the contingency table and compare
them with the software estimates. Write out the estimated model and interpret.

Solution: Since the variable ”Race” has four categories, three design variables are needed.

Design Variables
Race Black (d1) Hispanic (d2) Other (d3)
White 0 0 0
Black 1 0 0
Hispanic 0 1 0
Other 0 0 1

Let π̂(xi) be the estimated probability of developing coronary heart disease given the race
of an individual. Thus,

log

[
π̂(xi)

1− π̂(xi)

]
= −1.386 + 2.079di1 + 1.792di2 + 1.386di3.

Blacks are about 8 {exp(2.079) = 7.996} times more likely to develop coronary heart disease
as compared to whites. Similarly, the odds (risk) of coronary heart disease for hispanics
is about 6 {exp(1.792) = 6.001} times that of whites. The odds (risk) of coronary heart
disease for other (neither blacks nor hispanics) races is about 4 {exp(1.386) = 3.999} times
that of whites.
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3.2.5 Multiple Logistic Regression

Suppose there are k explanatory variables (categorical, continuous or both) to be considered
simultaneously. Then, the multiple logit model is written as:

logit π(xi) = log

[
π(xi)

1− π(xi)

]
= β0 + β1xi1 + β2xi2 + · · ·+ βkxik.

Similar to the simple logistic regression, exp(βj) represents the (partial) odds ratio asso-
ciated with an exposure if Xj is binary (exposed xij = 1 versus unexposed xij = 0); or
it is the odds ratio due to a unit increase if Xj is continuous (xij = xij +1 versus xij = xij).

If the jth explanatory variable, Xj, has mj levels, then the multiple logit model with k
variables would be

log

[
π(xi)

1− π(xi)

]
= β0 + β1xi1 + · · ·+ βj−1xi,j−1 +

mj−1∑
u=1

βjudiju + βj+1xi,j+1 + · · ·+ βkxik

where the dju’s are the mj − 1 design variables and βju, u = 1, 2, · · · ,mj − 1 are their
corresponding parameters.

Note: Odd ratios obtained from a simple logistic regression (one independent variable) are
called crude odds ratios (COR) and odd ratios obtained from a multiple logistic regression
(two or more independent variables) are called adjusted odds ratios (AOR).

Example 3.5. To determine the effect of vision status (1=vision problem, 0=no vision
problem) and driver education (1=took driver education, 0=did not take driver education)
of a driver on car accident (did the subject had an accident in the past year?), the following
parameter estimates are obtained from a sample of 210 individuals. Interpret the results.

Variable Parameter Estimate
Intercept 0.1110
Vision 1.7139
Education -1.5001

Solution: Let Y= car accident (yi = 1 if a subject had an accident in the past year and
yi = 0 if a subject had not an accident in the past year). Let X1= vision problem (xi1 = 1
if a subject had a vision problem and xi1 = 0 if a subject had not a vision problem). Let
X2= driver education (xi2 = 1 if a subject took driver education, xi2 = 0 if a subject did
not take driver education).

The estimated logit model is log
[

π̂(xi)
1−π̂(xi)

]
= 0.1110 + 1.7139xi1−1.5001xi2. The estimated

odds ratio associated with vision problem is exp(1.7139) = 5.551. The odds of having
accident for a person with vision problem is 5.551 times that of a person with no vision
problem assuming driver education the same. In other words, drivers who have vision
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problem are 5.551 times more likely to have an accident as compared to those with no
vision problem.

Also, the estimated odds ratio associated with education problem is exp(−1.5001) = 0.223.
Drivers who took driving education are 0.223 times less likely to have an accident as
compared to those who did not take driving education assuming the same vision status,
that is, the risk of having an accident for those who took a driving education is 77.7%
lower than those who did not take a driving education.

3.3 Statistical Inference

Recall the binary response probability given the values of the explanatory variables is

π(xi) =

exp(
k∑
j=0

βjxij)

1 + exp(
k∑
j=0

βjxij)

(3.1)

where xi0 = 1 for all i = 1, 2, · · · , n. Equivalently using the logit transformation, it can be
written as

log

[
π(xi)

1− π(xi)

]
=

k∑
j=0

βjxij. (3.2)

3.3.1 Parameter Estimation

The goal of logistic regression model is to estimate the k + 1 unknown parameters of the
model. This is done with maximum likelihood estimation which entails finding the set of
parameters for which the probability of the observed data is largest.

Given a data set with n independent observations. Suppose these responses are grouped
into m unique covariate patterns (called populations). Then each binary response Yi; i =
1, 2, · · · ,m has an independent Binomial distribution with parameter ni and π(xi), that
is,

P (Yi = yi) =

(
ni
yi

)
π(xi)

yi [1− π(xi)]
ni−yi ; yi = 0, 1, 2, · · · , ni

where xi = (xi1, xi2, · · · , xik) for population i and
m∑
i=1

ni = n. Then, the joint probability

mass function of the vector of m Binomial random variables, Y t = (Y1, Y2, · · · , Ym), is the
product of the m Binomial distributions

P (y|β) =
m∏
i=1

(
ni
yi

)
π(xi)

yi [1− π(xi)]
ni−yi . (3.3)
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The joint probability mass function in equation (3.3) expresses the values of y as a function
of known, fixed values for β = (β0, β1, β2, · · · , βk)t. The likelihood function has the same
form as the probability mass function, except that it expresses the values of β in terms of
known, fixed values for y. Thus,

`(β|y) =
m∏
i=1

(
ni
yi

)
π(xi)

yi [1− π(xi)]
ni−yi (3.4)

Note that the combination term does not contain any of the π(xi). As a result, it is
essentially constant that can be ignored: maximizing the equation without the combination
term will come to the same result as if it was included. Therefore, equation (3.4) can be
written as:

`(β|y) =
m∏
i=1

π(xi)
yi [1− π(xi)]

ni−yi (3.5)

and it can be re-arranged as:

`(β|y) =
m∏
i=1

[
π(xi)

1− π(xi)

]yi
[1− π(xi)]

ni (3.6)

By substituting the odds of successes and probability of failure in equation (3.6), the
likelihood function becomes

`(β|y) =
m∏
i=1

[
exp

(
yi

k∑
j=0

βjxij

)][
1 + exp

(
k∑
j=0

βjxij

)]−ni

(3.7)

Since the logarithm is a monotonic function, any maximum of the likelihood function will
also be a maximum of the log-likelihood function and vice versa. Thus, taking the natural
logarithm of equation (3.7) gives the log-likelihood function:

L(β|y) =
m∑
i=1

{
yi

k∑
j=0

βjxij − ni log

[
1 + exp

(
k∑
j=0

βjxij

)]}
(3.8)

To find the critical points of the log-likelihood function, first, equation (3.8) should be
partially differentiated with respect to each βj; j = 0, 1, · · · , k which results in a system of
k + 1 nonlinear equations with the k + 1 unknown parameters as shown in equation (3.9)
below:

∂L(β|y)

∂βj
=

m∑
i=1

[yixij − niπ(xi)xij] =
m∑
i=1

[yi − niπ(xi)]xij; j = 0, 1, 2, · · · , k. (3.9)

The maximum likelihood estimates for β can be, then, found by setting each of the k + 1
equation equal to zero and solving for each βj. Since the second partial derivatives of the
log-likelihood function:

∂2L(β|y)

∂βj∂βh
= −

m∑
i=1

niπ(xi)[1− π(xi)]xijxih; j, h = 0, 1, 2, · · · , k (3.10)
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is negative semidefinite, the log-likelihood is a concave function of the parameter β. In
addition, equation (3.10) represents the variance-covariance matrix of the parameter esti-
mates which is a function of var(Yi) = niπ(xi)[1− π(xi)].

These equations do not have a closed form solution. Several optimization techniques are
available for finding the maximizing estimates of the parameters. Of these, the Newton-
Raphson method is the one which is commonly used.

3.3.2 Overall Significance of the Model

Once a logistic regression model is estimated, the next task is to answer the question
”Does the entire set of explanatory variables contribute significantly to the prediction of
the response?”. In this case, two models are to be fitted; one with all explanatory variables
(full model) and the other with no explanatory variable (null model).

Likelihood-Ratio/Deviance Test

If the model has k explanatory variables (either binary or continuous), the null hypothesis
of no contribution of all the k explanatory variables is H0 : β1 = β2 = · · · = βk = 0. Let `0

denote the maximized value of the likelihood function of the null model which has only one
parameter, that is, the intercept. That is, `0 = `(β̂0). Also let `M denote the maximized
value of the likelihood function of the model M with all explanatory variables (having k+1
parameters). Here, `M = `(β̂0, β̂1, β̂2, · · · , β̂k).

Then, the likelihood-ratio test statistic is G2 = −2 log(`0/`M) = −2(log `0 − log `M) ∼
χ2(k). Deviance is -2 times the log-likelihood value of a model. Thus, G2 = D0 −DM ∼
χ2(k).

Rejection of the null hypothesis, has an interpretation analogous to that in multiple linear
regression using F test, indicates at least one of the k parameters is significantly different
from zero.

Example 3.6. Suppose, a study was conducted with the objective of identifying the risk
factors associated with HIV/AIDS HAART treatment defaulter patients. Of 1464 patients,
331 were defaulted and the remaining 1133 were actively following the treatment. Five
variables which were considered as explanatory variables are age in years (Age), weight in
kilograms (Weight), Gender (0=Female, 1=Male), Functional Status (0=Working, 1=Am-
bulatory, 2=Bedridden) and number of baseline CD4 counts (CD4). The parameter esti-
mates and their corresponding standard errors are presented in the following table.
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Variable Parameter Estimate Standard Error
Intercept -0.3120 0.4299
Age -0.0282 0.0080
Weight -0.0051 0.0071
Gender 0.5372 0.1438
Ambulatory 0.4959 0.1448
Bedridden 1.2610 0.2882
Working Ref.
CD4 -0.0007 0.0004

The log-likelihood value of the null model is -782.5257 and the log-likelihood value of the
full model is -753.2892. Test the significance of the entire five variables altogether.

Solution: The response variable takes the value yi = 1 if the patient was defaulted and
yi = 0 otherwise (if the patient was on the treatment).

The design variables for Functional Status are:

Design Variables
Functional Status Ambulatory (d41) Bedridden (d42)
Working 0 0
Ambulatory 1 0
Bedridden 0 1

Now the model can be written as

log

[
π(xi)

1− π(xi)

]
= β0 + β1 Agei + β2 Weighti + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni + β5 CD4i

The null hypothesis to be tested is H0 : β1 = β2 = β3 = β41 = β42 = β5 = 0. The test
statistic value is G2 = −2(log `0− log `M) = −2[−782.5257− (−753.2892)] = 58.473 which
is greater than χ2

0.05(6) = 12.592. Therefore, H0 should be rejected. At least one of the
parameter is significantly different from zero.

3.3.3 Significance Test for Parameters

Once the null hypothesis of no contribution of all the explanatory variables to the model
is rejected, there is a need to look at which of the variables are significant and which are
not. The Wald test is used to identify the statistical significance of each coefficient (βj) of
the logit model. That is, it is used to test the null hypothesis H0 : βj = 0 which states
that factor Xj does not have significant value added to the prediction of the response given
that other factors are already included in the model. The test statistic for large sample
size is, therefore,

Zj =
β̂j

ŜE(β̂j)
∼ N(0, 1).
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Example 3.7. Recall example 3.6. Write out the estimated model and identify the sig-
nificant explanatory variables using Wald test, and interpret the results.

Solution: We have that the estimated model is:

log

[
π(xi)

1− π(xi)

]
=− 0.3120− 0.0282 Agei − 0.0051 Weighti + 0.5372 Genderi

+ 0.4959 Ambulatoryi + 1.2610 Bedriddeni − 0.0007 CD4i

The Wald test help us to identify those parameters which are responsible for rejection of
the null hypothesis of all the parameters are zero. The value of the Wald test for each
parameter which is obtained by dividing each parameter estimate by the corresponding
standard error estimate is given in the following table.

Variable Parameter Estimate Standard Error Wald Test
Intercept -0.3120 0.4299 -0.7258
Age -0.0282 0.0080 -3.5250*
Weight -0.0051 0.0071 -0.7183
Gender 0.5372 0.1438 3.7357*
Ambulatory 0.4959 0.1448 3.4247*
Bedridden 1.2610 0.2882 4.3754*
Working Ref.
CD4 -0.0007 0.0004 -1.7500

As it can be seen from this table, age, gender and functional status (since both of the de-
sign variables are significant) are significant at 5% level of significance. When the age
of the patient increases by one year, the odds of being defaulted decreases by a fac-
tor of exp(−0.0282) = 0.9723 assuming all other variables are same. Also, males are
exp(0.5372) = 1.7112 times more likely to default than females, that is, the odds of being
defaulted for males is 71.12% higher than that of females assuming the other variables con-
stant. Again, assuming all other variables constant, ambulatory and bedridden patients
are 1.6420 and 3.5290 times more likely to be defaulted than working patients, respectively.

Significance of a Polytomous Predictor

The Wald test considered above is used to identify the statistical significance of a binary or
continuous explanatory variable. Whenever a multinomial explanatory variable is included
(excluded) in (from) the model, all of its design variables should be included (excluded);
to do otherwise implies the variables are recorded. By just looking at the Wald statistics
of the design variables, the contribution of the variable could not be determined. Hence,
the Wald test can be not used to check the significance of such a variable, rather the
likelihood-ratio test should be used.
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If Xj has m categories, then the null hypothesis of no contribution of this multinomial
variable is H0 : βj1 = βj2 = · · · = βj,m−1 = 0. The likelihood-ratio test statistic is
G2 = −2(log `R − log `M) ∼ χ2(m − 1) where `R is the maximized likelihood value under
H0 (excluding the multinomial variable Xj) and `M is the maximized likelihood value of
the full model.

Example 3.8. Again recall example 3.6. Test the significance of functional status.

Solution: Since functional status is a multinomial variable with m = 3 categories, wald
test cannot be used for checking its significance. The null hypothesis is H0 : β41 = β42 = 0.
Here, β41 and β42 are the parameters associated with the two design variables of functional
status; ambulatory and bedridden, respectively. Therefore, the model in example 3.6 is
re-fitted without the two design variables of marital status. When fitted, the log-likelihood
value becomes -765.7410.

The likelihood-ratio test statistic isG2 = −2(log `R−log `M) = −2[−765.7410−(−753.2892)] =
24.9036. Since this value is greater than χ2

0.05(2) = 5.9915, functional status has a signifi-
cant contribution to the model.

3.3.4 Confidence Intervals

Confidence Intervals for Parameters

Confidence intervals are more informative than tests. A confidence interval for βj results
from inverting a test of H0 : βj = βj0. The interval is the set of βj0’s for which the z test

statistic is not greater than zα/2. This means |β̂j − βj0| ≤ zα/2|ŜE(β̂j)|. This yields the
confidence interval [

β̂j ± zα/2ŜE(β̂j)
]

for βj; j = 1, 2, · · · , k. As the point estimate of the odds ratio associated to Xj is exp(β̂j)
and its confidence interval is {

exp
[
β̂j ± zα/2ŜE(β̂j)

]}
.

Example 3.9. Recall example 3.6 and construct the 95% confidence interval for each pa-
rameter and the corresponding odds ratio.

Solution: The critical value z0.025 = 1.96
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Variable β̂j ŜE(β̂j) 95% CI for βj 95% CI for ORj = exp(βj)
Intercept -0.3120 0.4299
Age -0.0282 0.0080 (-0.0439, -0.0125)* (0.9570, 0.9876)*
Weight -0.0051 0.0071 (-0.0190, 0.0088) (0.9812, 1.0088)
Gender 0.5372 0.1438 ( 0.2554, 0.8190)* (1.2910, 2.2682)*
Ambulatory 0.4959 0.1448 ( 0.2121, 0.7797)* (1.2363, 2.1808)*
Bedridden 1.2610 0.2882 ( 0.6961, 1.8259)* (2.0059, 6.2084)*
Working Ref.
CD4 -0.0007 0.0004 (-0.0015, 0.0001) (0.9985, 1.0001)

Confidence Intervals for Predicted Probabilities

For summarizing the relationship, other characteristics may have greater importance such
as π(xi) at various xi values. Consider the simple logistic model, logit π̂(xi) = α̂ + β̂xi.
For a fixed xi = x0, logit π̂(x0) = α̂ + β̂x0 has a large standard error given by√

var(α̂) + x2
0 var(β̂) + 2x0 cov(α̂, β̂).

A (1− α)100% confidence interval for logit π(x0) is[
(α̂ + β̂x0)± zα/2

√
var(α̂ + β̂x0)

]
.

Substituting each end point into the inverse transformation

π(x0) =
exp{logit[π̂(x0)]}

1 + exp{logit[π̂(x0)]}

gives the corresponding interval for π(x0).

Example 3.10. Recall example 3.6, in which the estimated model is logit π̂(xi) = −3.4648+
0.0931xi. The variance-covariance matrix of the estimated parameters is:(

3.4037 −0.0744
0.0019

)
Find the 95% confidence interval for the odds ratio and for the probability of success at
the age of 39.6923 years (xi = 39.6923).

Solution: β̂ = 0.0931, v̂ar(α̂) = 3.4037, v̂ar(β̂) = 0.0019 and ĉov(α̂, β̂) = −0.0744.

The 95% confidence interval for β is[
β̂ ± zα/2

√
v̂ar(β̂)

]
=
(

0.0931± 1.96
√

0.0019
)

= (0.0077, 0.1785).
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This implies, the confidence interval for the odds ratio is

[exp(0.0077, 0.1785)] = [exp(0.0077), exp(0.1785)] = (1.0077, 1.1954).

Also, to construct the confidence interval for the proportion of having hypertension at the
age of 39.6923 years, the estimated probability of having hypertension at the age of 39.6923
years is logit π̂(39.6923) = −3.4648 + 0.0931(39.6923) = 0.2306 and its estimated variance
is

v̂ar{logit [π̂(39.6923)]} = v̂ar(α̂) + 39.69232 v̂ar(β̂) + 2(39.6923) ĉov(α̂, β̂)

= 3.4037 + 39.69232(0.0019) + 2(39.6923)(−0.0744)

= 0.4909

The 95% confidence interval for logit π(39.6923) is (0.2306±1.96
√

0.4909) = (−1.1427, 1.6039).
Thus, the 95% confidence interval for the probability of hypertension at the age of 39.6923
years is [

exp(−1.1427)

1 + exp(−1.1427)
,

exp(1.6039)

1 + exp(1.6039)

]
= (0.2418, 0.8326).

This confidence interval is very wide which may be due to the small sample size, n = 13.

Testing for a Set of Predictors

Sometimes, determining the contribution of a group of variables may be an interest. As
usual, two models; one with all explanatory variables (full model) and the other without
the explanatory variables to be tested (reduced model) are to be fitted. Thus, the reduced
model is a special case of the full model.

Let `M denote the maximized value of the likelihood function for the model of interest M
with pM = k+1 parameters and let `R denote the maximized value of the likelihood function
for the reduced model R with pR = k + 1 − q parameters. Note that model R is nested
under model M . Thus, the null hypothesis H0 : β1 = β2 = · · · = βq = 0 of no contribution
of all the q predictors in model M (according to the alternative, at least one of the extra
parameters in the full model is nonzero) is tested using G2 = −2(log `R − log `M) ∼ χ2(q)
where `M = `(β̂0, β̂1, β̂2, · · · , β̂k) and `R = `(β̂0, β̂q+1, β̂q+2, · · · , β̂k).

Example 3.11. Recall example 3.6. Obtain the best fitting model.

Solution: Considering that the over all goal is to obtain the best fitting model, the logical
step is to fit a reduced model containing only those significant variables and compare it to
the model containing all the variables.

For our case, the model is of the form

logit π(xi) = β0 + β1 Agei + β2 Weighti + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni + β5 CD4i.
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Note that the variables Weight and CD4 are not significant. As a result, a new model is
fitted excluding these insignificant variables. This new model has a log-likelihood value of
-754.9283, and the parameter estimates and standard errors are in the following table.

Variable Parameter Estimate Standard Error Wald Test
Intercept -0.6858 0.2623 -2.6146*
Age -0.0295 0.0079 -3.7342*
Gender 0.5305 0.1372 3.8666*
Ambulatory 0.5679 0.1375 4.1302*
Bedridden 1.3571 0.2827 4.8005*

The difference in this model is the exclusion of the Weight and CD4 variables. Thus, this
reduced model is

logit π(xi) = β0 + β1 Agei + β3 Genderi

+ β41 Ambulatoryi + β42 Bedriddeni.

Therefore, to determine whether the two variables should be included or not, the null
hypothesis is H0 : β2 = β5 = 0. The likelihood-ratio test statistic value is G2 = −2(log `R−
log `M) = −2[−754.9283 − (−753.2892)] = 3.2782 which is less than χ2

0.05(2) = 5.9915.
Hence, there is no advantage of including both the Weight and CD4 variables in the model.
Thus, the best fitting model is

logit π̂(xi) = −0.6858− 0.0295 Agei + 0.5305 Genderi

+ 0.5679 Ambulatoryi + 1.3571 Bedriddeni.

However, CD4 is known to be a ”biologically important” variable. In this case, the decision
to include or exclude the CD4 variable should be made in conjunction with subject matter
experts.
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Chapter 4

Model Building and Diagnostics

4.1 Objective and Learning Outcomes

In the previous chapter, a logistic regression model is fitted with a fixed set of explanatory
variables and explored techniques of inference assuming that the model and the chosen
variables were correct. Generally, every probability model is an assumption that may or
may not be satisfied by the data. Also, in practice there is often uncertainty regarding
which explanatory variables have to be included in a model. Therefore, the objective of
this chapter is to describe the common model building procedures and diagnostics methods
in fitting multiple logistic regression.

Upon completion of this chapter, students are expected to:

• Compare nested models using the likelihood-ratio (deviance) test and nonnested mod-
els using information criteria.

• Calculate measures of the predictive power (pseudo R2s) from the likelihood values
of a logistic model.

• Determine and interpret the overall proportion of correct classifications.

• Check the adequacy of a fitted model using the Pearson, deviance and Hosmer-
Lemeshow gooodness-of-fit tests.

4.2 Model Selection

Model selection consists of identifying an appropriate probability model and choosing a set
of explanatory variables to be used in the model. With several explanatory variables, there
are many potential models. The model selection process becomes harder as the number of
explanatory variables increases, because of the rapid increase in possible effects and inter-
actions. There are two competing goals of model selection. The first is the model should
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be complex enough to fit the data well. A more complex model might contain a nonlinear
effect, such as a quadratic term to allow the effect of a predictor to change directions as its
value increases. Models with multiple predictors would consider interaction terms. On the
other hand, it should be simple to interpret, smoothing rather than over fitting the data.
Then, a search among many models may provide clues about which explanatory variables
are associated with the response.

Variable selection is the process of reducing the size of the model from a potentially large
number of variables to a more manageable and interpretable set. There are many ap-
proaches to selecting variables. The three most common ones are described below.

• Forward Selection:

1. Fit a simple logistic regression model to each factor, one at a time.

2. Select the most important factor according to a certain predetermined criterion.

3. Test for the significance of the factor selected in step 2 and determine according
to a certain predetermined criterion, whether or not to add this factor to the
model.

4. Repeat step 2 and 3 for those variables not yet in the model. At any subsequent
step, if none meets the criterion in step 3 no more variables are included in the
model and the process is terminated.

• Backward Elimination:

1. Fit multiple logistic regression model containing all available explanatory vari-
ables.

2. Select the least important variable according to a certain predetermined crite-
rion; this is done by considering one factor at a time.

3. Test for the significance of the factor selected in step 2 and determine according
to the predetermined criterion, whether or not to delete this factor from the
model.

4. Repeat step 2 and 3 for those variables still in the model. At any subsequent
step, if none meets the criterion in step 3, no more variables are removed from
the model and the process is terminated.

• Stepwise Selection: It is a modified version of forward selection that permits re-
examination, at every step, of the variables incorporated in the model in the previous
steps. A variable entered at an early stage may become superfluous at a later stage
because of its relationship with other variables now in the model; the information it
provides becomes redundant. That variable may be removed if meeting the elimina-
tion criterion and the model is re-fitted with the remaining variables, and the forward
process goes on. The entire process, one step forward followed by one step backward,
continues until more variables can be added or removed.
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4.3 Measures of Predictive Power

4.3.1 Pseudo R2 Measures

In ordinary regression, the coefficient of determination R2 and the multiple correlation R
describe the power of the explanatory variables to predict the response, with R ≈ 1 for
best prediction. Despite the various attempts to define analogs for categorical response
models, there is no proposed measure as widely useful as R and R2. Some of the proposed
measures which directly use the likelihood function are presented here.

Let the maximized likelihood be denoted by `M for a given model, `S for the saturated
model and `0 for the null model containing only an intercept term. These probabilities
are not greater than 1, thus log-likelihoods are nonpositive. As the model complexity
increases, the parameter space expands, so the maximized log-likelihood increases. Thus,
`0 ≤ `M ≤ `S ≤ 1 or log `0 ≤ log `M ≤ log `S ≤ 0. The measure

R2 =
log `M − log `0

log `S − log `0

lies in between 0 and 1. It is zero when the model provides no improvement in fit over the
null model and it will be 1 when the model fits as well as the saturated model.

The McFadden R2

Since the saturated model has a parameter for each subject, the log `S approaches to zero.
Thus, log `S = 0 simplifies R2

McFadden = 1− (log `M/ log `0).

The Cox & Snell R2

The Cox & Snell modified R2 is R2
Cox-Snell = 1− (`0/`M)2/n = 1− [exp(log `0 − log `M)]2/n.

The Nagelkerke R2

Because theR2
Cox-Snell value cannot reach 1, Nagelkerke modified it. The correction increases

the Cox & Snell version to make 1 a possible value for R2.

R2
Nagelkerke =

1− (`0/`M)2/n

1− (`0)2/n
=

1− [exp(log `0 − log `M)]2/n

1− [exp(log `0)]2/n

Example 4.1. Obtain the McFadden, Cox & Snell, and Nagelkerke pseudo R2s for the
model fitted on example 3.11.

Solution: Note that log `M = −754.9283 which is given on example 3.11. Also log `0 =
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−782.5257 and n = 1464 as given on example 3.6. Therefore,

R2
McFadden = 1− (−754.9283/− 782.5257) = 0.0352

R2
Cox-Snell = 1− [exp(−782.5257 + 754.9283)]2/1464 = 0.0370

R2
Nagelkerke =

1− [exp(−782.5257 + 754.9283]2/1464

1− [exp(−782.5257)]2/1464
= 0.056.

4.3.2 Classification Tables

A classification table is also useful to summarize the predictive power of a binary logistic
model. The table cross-classifies the binary response with a prediction of whether y = 0
or y = 1. The prediction is ŷ = 1 when π̂ > π0 and ŷ = 0 when π̂ ≤ π0, for some cutoff π0.
Most classification tables use π0 = 0.5. However, if a low (high) proportion of observations
have y = 1, the model fit may never (always) have π̂ > 0.50, in which case one never (al-
ways) predicts ŷ = 1. Another possibility takes π0 as the sample proportion of successes,
which is π̂ for the model containing only an intercept term.

Summary of prediction power from the classification table is the overall proportion of
correct classifications. This estimates

P (correct classification) = P (y = 1 and ŷ = 1) + P (y = 0 and ŷ = 0)

= P (y = 1) · P (ŷ = 1|y = 1) + P (y = 0) · P (ŷ = 0|y = 0).

Limitations of this table are that it collapses continuous predictive values π̂ into binary
ones, the choice of π0 is arbitrary, and it is highly sensitive to the relative numbers of times
y = 1 and y = 0.

Example 4.2. Recall example 3.1. The fitted probabilities of having hypertension for
each individual is given in the following table. Using the cutoff value π̂0 = 0.50, find the
proportion of correct classification.

Age (xi) Hypertension (yi) Probability [π̂(xi)]
20 1 0.1676
55 1 0.8397
55 1 0.8397
60 1 0.8929
60 1 0.8929
60 1 0.8929
45 1 0.6736
18 0 0.1432
55 0 0.8397
30 0 0.3381
18 0 0.1432
20 0 0.1676
20 0 0.1676
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Solution: Based of the cutoff value 0.5, the probabilities above 0.5 are taken as 1 and those
probabilities less than or equal to 0.5 are taken as 0. Hence, ŷi = (0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0).
Thus:

P (correct classification) = P (y = 1) · P (ŷ = 1|y = 1) + P (y = 0) · P (ŷ = 0|y = 0)

=
7

13
· 6

7
+

6

13
· 5

6
= 0.8462

Therefore, P (correct classification) is 84.62%.

Information Criteria (AIC and BIC)

Deviance or likelihood-ratio tests are used for comparing nested models. When there
are non nested models, information criteria can help to select the good model. The best
known ones are the Akaike Information Criterion (AIC) and Bayesian Information Criteria
(BIC). Both judge a model by how close its fitted values tend to be to the true expected
values. Also, both are calculated based on the likelihood value of a particular model M
as AIC = −2 log `M + 2pM and BIC = −2 log `M + pM log(n) where pM is number of
parameters in the model and n is the sample size. A model having smaller AIC or BIC
is better.

Example 4.3. Find the AIC and BIC values for the model given on example 3.11.

Solution: It is already given log `M = −754.9283, pM = 5 and n = 1464. This implies the
AIC = 1519.8566 and BIC = 1546.3012.

4.4 Model Checking

Once the variable selection process is addressed, then the selected model should be explored
for assessing whether the assumptions of the probability model are satisfied. The diagnos-
tic methods for logistic regression, like that of linear regression, mostly rely residuals which
compare observed and predicted values. Goodness-of-fit statistics are often computed as
an objective measures of the overall fit of a model. A model checked and if it is found
lacking the fit, a new model is proposed - fitted and then checked. And this process is
repeated until a satisfactory model is found.

Similar to grouping the observations by the unique covariate patterns for the purpose
of estimating the parameters, again here for the purpose of checking the goodness-of-fit
of a model, the n independent responses are grouped into m unique covariate patterns

(populations) each with ni; i = 1, 2, · · · ,m observations where
m∑
i=1

ni = n. Of the ni

observations in each covariate pattern, if n1i successes are observed, then n0i = ni − n1i of
them are failures. Thus, the raw residual is the difference between the observed number
of successes n1i and expected number of successes µ̂(xi) = niπ̂(xi) for each value of the
covariate xi.
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4.4.1 The Pearson Chi-squared Goodness-of-fit Statistic

The Pearson residual is the standardized difference between the observed and expected
number of successes. That is,

ri =
n1i − niπ̂(xi)√
niπ̂(xi)[1− π̂(xi)]

; i = 1, 2, · · · ,m.

Thus, the Pearson chi-squared statistic is the sum of the square of standardized residuals:

X2 =
m∑
i=1

[n1i − niπ̂(xi)]
2

niπ̂(xi)[1− π̂(xi)]
∼ χ2(m− k).

When this statistic is close to zero, it indicates a good model fit to the data. When it is
large, it is an indication of lack of fit. Often the Pearson residuals ri are used to determine
exactly where the lack of fit occurs.

Example 4.4. Recall again example 3.1. Test the adequacy of the model using the Pearson
chi-squared test.

Solution: The fitted probabilities are obtained from the fitted model. Note here the
number of populations (aggregate values of the explanatory variable) is m = 6. Thus,

ri =
n1i − niπ̂(xi)√
niπ̂(xi)[1− π̂(xi)]

; i = 1, 2, · · · , 6

Group (xi) Frequency (ni) Successes (n1i) Probability [π̂(xi)] ri r2
i

18 2 0 0.1432 -0.5782 0.3343
20 3 1 0.1676 0.7685 0.5906
30 1 0 0.3381 -0.7147 0.5108
45 1 1 0.6736 0.6961 0.4846
55 3 2 0.8397 -0.8169 0.6673
60 3 3 0.8929 0.5999 0.3599

Total 13 7 2.9475

The Pearson chi-squared test statistic becomes X2 =
6∑
i=1

r2
i = 2.9475 which is smaller than

χ2
0.05(6− 2) = χ2

0.05(4) = 9.4877, indicating that the model is a good fit to the data.

4.4.2 The Deviance Statistic

The deviance, like the Pearson chi-squared, is used to test the adequacy of the logistic
model. As shown before, the maximum likelihood estimates of the parameters of the
logistic regression are estimated iteratively by maximizing the Binomial likelihood function.
Maximizing the likelihood function is equivalent to minimizing the deviance function. The
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choices for β̂j; j = 0, 1, · · · , k that minimize the deviance are the parameter values that
make the observed and fitted proportions as close together as possible in a ’likelihood
sense’. The deviance is given by:

D = 2
m∑
i=1

{
n1i log

[
n1i

niπ̂(xi)

]
+ (ni − n1i) log

[
ni − n1i

ni[1− π̂(xi)]

]}
∼ χ2(m− k)

where the fitted probabilities π̂(xi) satisfy logit π̂(xi) =
k∑
j=0

β̂jxij and xi0 = 1. The deviance

is small when the model fits the data, that is, when the observed and fitted proportions
are close together. Large values of D (small p-values) indicate that the observed and fitted
proportions are far apart, which suggests that the model is not good.

4.4.3 The Hosmer-Lemeshow Test Statistic

The Pearson chi-squared goodness-of-fit test cannot be readily applied if there are only one
or a few observations for each possible value (combination of values) of the explanatory
variable(s). Consequently, the Hosmer-Lemeshow statistic, the best goodness-of-fit test
with continuous explanatory variables, was developed to address this problem. The idea is
to aggregate similar observations into (mostly 10 - decile) groups that have large enough
samples so that a Pearson statistic is computed on the observed and predicted counts from
the groups. That is,

HL =
m∑
i=1

[n1i − niπ̂(xi)]
2

niπ̂(xi)[1− π̂(xi)]
∼ χ2(m− 2).
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Chapter 5

Multicategory Logit Models

5.1 Objective and Learning Outcomes

The objective of this chapter is to extend the standard logistic regression model to handle
outcome variables that have more than two categories. Multinomial logistic regression is
used when the categories of the outcome variable are nominal, that is, they do not have
any natural order. When the categories of the outcome variable do have a natural order,
ordinal logistic regression may also be appropriate.

Upon completion of this chapter, students are expected to:

• Fit and interpret multinomial and ordinal logistic regression models for a multinomial
response variable.

• Calculate the probability of each category of a multinomial and ordinal response
variable given the values of the explanatory variables.

• Differentiate proportional and nonproportional odds models.

5.2 Logit Models for Nominal Responses

Multinomial logistic regression is used to predict a nominal dependent variable given one
or more independent variables. It is an extension of binomial logistic regression to allow
for a dependent variable with more than two categories.

Let Y be a categorical response with J categories. Let P (Y = j|xi) = πj(xi) at a fixed

setting xi for explanatory variables with
J∑
j=1

πj(xi) = 1. Thus, Y has a multinomial distri-

bution with probabilities {π1(xi), π2(xi), · · · , πJ(xi)}.
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Multinomial (also called polytomous) logit models for nominal response variables simulta-
neously describe log odds for all

(
J
2

)
pairs of categories. Of these, a certain choice of J − 1

are enough to determine all, the rest are redundant. An odds for a multinomial response
can be defined to be a comparison of any pair of response categories. For example, the
odds of category 1 relative to category 3 is simply the ratio π1/π3.

5.2.1 Baseline Category Logit Models

Logit models for multinomial responses are developed by selecting one response category,
often the first (last) category or the most common one, as a baseline (reference) and
forming the odds of the remaining J − 1 categories against this category. For example, the
multinomial logit model (also called baseline category logit model) pairing each response
category with the last category,

log

[
πj(xi)

πJ(xi)

]
= βj0 + βj1xi1 + βj2xi2 + · · ·+ βjkxik; j = 1, 2, · · · , J − 1

simultaneously describes the effects of the explanatory variables on the J − 1 logit models
(if J = 2, it simplifies to binary logistic regression model). The intercepts and effects vary
according to the response paired with the baseline. That is, each model has its own inter-
cept and slope. Also note that for the reference category, βJ0 = βJ1 = βJ2 = · · · = βJk = 0.

The J−1 equations also determine parameters for logit models with other pairs of response
categories, since

log

[
π1(xi)

π2(xi)

]
= log

[
π1(xi)/πJ(xi)

π2(xi)/πJ(xi)

]
= log

[
π1(xi)

πJ(xi)

]
− log

[
π2(xi)

πJ(xi)

]
.

Example 5.1. Based on the survival outcome of HAART treatment, HIV/AIDS patients
were classified into four categories (0= Active, 1= Dead, 2= Transferred to other hos-
pital, 3= Lost-to-follow). To identify factors associated with these survival outcomes, a
multinomial logit model was fitted. Three explanatory variables that were considered are
Age, Gender (0= Female, 1= Male) and Functional Status (0= Working, 1= Ambulatory,
2= Bedridden). The parameter estimates are presented as follows (values in brackets are
standard errors).

Functional Status
logit Intercept Age Gender Ambulatory Bedridden

log(π̂D/π̂A) -3.271 (0.624) -0.020 (0.018) 0.564 (0.325) 0.940 (0.333) 2.280 (0.479)
log(π̂T/π̂A) -1.882 (0.413) -0.030 (0.012) 0.635 (0.211) 0.833 (0.209) 1.584 (0.393)
log(π̂L/π̂A) -1.116 (0.343) -0.031 (0.010) 0.455 (0.178) 0.292 (0.183) 0.828 (0.395)

Write the estimated multinomial logit models and interpret. Also, find the estimated logit
model for the log odds of dead instead of transferred to other hospital.
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Solution: Let Y = survival outcome, X1 = age of the patient, X2 = gender and X3=
functional status.

Each model is written as:

log

[
π̂j(xi)

π̂A(xi)

]
= β̂j0 + β̂j1xi1 + β̂j2xi2 + β̂j31di31 + β̂j32di32; j = D,T, L.

For example, the estimated model for the log odds of being dead instead of active is

log

[
π̂D(xi)

π̂A(xi)

]
= −3.271− 0.020xi1 + 0.564xi2 + 0.940di31 + 2.280di32.

An increase in the age of a patient by one year decreases the odds of being dead (instead
of active) by 2% (a factor of exp(−0.020) = 0.98). The odds that male patients being
dead (instead of active) is exp(0.565) = 1.759 times that of females, or the odds of be-
ing dead (instead of active) is 75.9% higher for males than for females. In other words,
relative to female patients, male patients are 1.759 times (75.9%) more likely to be dead
(instead of active). Also, ambulatory patients are exp(0.941) = 2.563 times more likely
to be dead (instead of active) as compared to working patients. Similarly, bedridden pa-
tients are exp(2.280) = 9.777 times more likely to be dead (instead of active) relative to
working patients. The functional status effects indicate that the odds of being dead (in-
stead of active) are relatively higher for bedridden patients relative to ambulatory patients.

The estimated model for the log odds of being transferred instead of active is

log

[
π̂T (xi)

π̂A(xi)

]
= −1.882− 0.030xi1 + 0.635xi2 + 0.833di31 + 1.584di32.

An increase in the age of a patient by a year decreases the odds of being transferred to other
hospital (instead of active) by 3% (a factor of exp(−0.030) = 0.970). The odds that male
patients being transferred to other hospital (instead of active) is exp(0.635) = 1.887 times
that of females, or the odds of being transferred to other hospital (instead of active) is 88.7%
higher for males than for females. In other words, male patients are 1.887 times (88.7%)
more likely to be transferred to other hospital (instead of active) as compared to female
patients. Also, relative to working patients, ambulatory patients are exp(0.833) = 2.300
times more likely to be transferred to other hospital (instead of active). Similarly, bedrid-
den patients are exp(1.584) = 4.874 times more likely to be transferred to other hospital
(instead of active) as compared to working patients.

Also, the estimated model for the log odds of being lost-to-follow instead of active is

log

[
π̂L(xi)

π̂A(xi)

]
= −1.116− 0.031xi1 + 0.455xi2 + 0.292di31 + 0.828di32.

The odds of being lost-to-follow (instead of active) decreases by 3.1% (a factor of exp(−0.031) =
0.969) every year older an individual is. Male patients are exp(0.455) = 1.576 times (57.6%)
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more likely to be lost-to-follow (instead of active) relative to female patients. As compared
to working patients, ambulatory patients are exp(0.292) = 1.339 times (33.9%) more likely
to be lost-to-follow (instead of active). Similarly, bedridden patients are exp(0.828) = 2.289
times more likely to be lost-to-follow (instead of active) as compared to working patients.

The estimated model for being dead instead of transferred to other hospital is

log

[
π̂D(xi)

π̂T (xi)

]
= log

[
π̂D(xi)

π̂A(xi)

]
− log

[
π̂T (xi)

π̂A(xi)

]
=− 3.271− 0.020xi1 + 0.564xi2 + 0.940di31 + 2.280di32

− (−1.882− 0.030xi1 + 0.635xi2 + 0.833di31 + 1.584di32)

=− 1.389 + 0.010xi1 − 0.071xi2 + 0.107di31 + 0.696di32.

Therefore, the estimated model for the log odds of dead instead of transferred to other
hospital is

log

[
π̂D(xi)

π̂T (xi)

]
= −1.389 + 0.010xi1 − 0.071xi2 + 0.107di31 + 0.696di32.

5.2.2 Multinomial Response Probabilities

The probabilities for each category of the multinomial response also can be found in terms
of the model. Using the properties of logarithms, the logit models for a multinomial re-
sponses can be re-written as πj(xi) = πJ(xi) exp(βj0 + βj1xi1 + βj2xi2 + · · · + βjkxik) for
j = 1, 2, · · · , J − 1.

Since
J∑
h=1

πh(xi) = 1,
J−1∑
h=1

πJ(xi) exp(βh0 + βh1xi1 + βh2xi2 + · · ·+ βhkxik) + πJ(xi) = 1. By

factoring out the common term πJ(xi), the probability of the reference category is

πJ(xi) =
1

1 +
J−1∑
h=1

exp(βh0 + βh1xi1 + βh2xi2 + · · ·+ βhkxik)

.

Hence, the equation that expresses multinomial logit models directly in terms of response
probabilities {πj(xi)} is

πj(xi) =
exp(βj0 + βj1xi1 + βj2xi2 + · · ·+ βjkxik)

1 +
J−1∑
h=1

exp(βh0 + βh1xi1 + βh2xi2 + · · ·+ βhkxik)

; j = 1, 2, · · · , J − 1.

Or, in general for all the response categories, it can be written as

πj(xi) =
exp(βj0 + βj1xi1 + βj2xi2 + · · ·+ βjkxik)

J∑
h=1

exp(βh0 + βh1xi1 + βh2xi2 + · · ·+ βhkxik)

; j = 1, 2, · · · , J

where βJp = 0 for p = 1, 2, · · · , k.
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Example 5.2. Consider the previous example. Find the estimated probability of each
outcome for a 40 years old female patient who were working.

Solution: The estimated probability of each outcome with xi1 = 40, xi2 = 0 and di31 =
di32 = 0

π̂D(xi) =
exp[−3.271− 0.020(40)]

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.0147

π̂T (xi) =
exp[−1.882− 0.030(40)]

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.0396

π̂L(xi) =
exp[−1.116− 0.031(40)]

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.0819

π̂A(xi) =
1

1 + exp[−3.271− 0.020(40)] + exp[−1.882− 0.030(40)] + exp[−1.116− 0.031(40)]

= 0.8638

The value 1 in each denominator and in the numerator of π̂A(xi) represents exp(0) for
which β̂0 = β̂1 = · · · = β̂k = 0 with the baseline category.

5.3 Cumulative Logit Models for Ordinal Responses

Many categorical response variables have a natural ordering to their categories or called
levels. For example, a response variable (like amount of agreement) may be measured using
a Likert scale with categories ’strongly disagree’, ’disagree’, ’neutral’, ’agree’ or ’strongly
agree’. Ordinal logistic regression is used to predict such an ordinal dependent variable
given one or more independent variables.

5.3.1 Cumulative Logits

Let Y is an ordinal response with J categories. Then there are J − 1 ways to dichotomize
these outcomes. These are Yi ≤ 1 (Yi = 1) versus Yi > 1, Yi ≤ 2 versus Yi > 2, · · · ,
Yi ≤ J − 1 versus Yi > J − 1 (Yi = J). With this categorization of Yi, P (Yi ≤ j) is the
cumulative probability that Yi falls at or below category j. That is, for outcome j, the
cumulative probability is

P (Yi ≤ j|xi) = π1(xi) + π2(xi) + · · ·+ πj(xi); j = 1, 2, · · · , J

where P (Yi ≤ j|xi) = 1. Each cumulative logit model uses all the J response levels. A
model for logit [P (Y ≤ j|xi)] alone is the usual logit model for a binary response in which
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categories from 1 to j form one outcome and categories from j + 1 to J form the second.
That is,

logit P (Yi ≤ j) = log

[
P (Yi ≤ j)

1− P (Yi ≤ j)

]
= log

[
P (Yi ≤ j)

P (Yi > j)

]
= log

[
π1(xi) + π2(xi) + · · ·+ πj(xi)

πj+1(xi) + πj+2(xi) + · · ·+ πJ(xi)

]
; j = 1, 2, · · · , J − 1.

5.3.2 Proportional Odds Model

Formally, a model that simultaneously uses all cumulative logits assuming linear relation-
ship with the explanatory variables is

logit P (Yi ≤ j|xi) = βj0 + β1xi1 + β2xi2 + · · ·+ βkxik; j = 1, 2, · · · , J − 1.

Each cumulative logit has its own intercept which usually are not of interest except for
computing response probabilities. Since logit [P (Yi ≤ j|xi)] increases in j for a fixed xi
and the logit is an increasing function of this probability, each intercept increases in j.

But, the model assumes the same slope (its associated odds ratio called cumulative odds
ratio) regardless of the category j. This is called proportional odds assumption which
means the distance between each category is equivalent (proportional odds). That is, each
model has the same effect associated with each explanatory variable (the effects of the
explanatory variables are the same regardless of which cumulative probabilities are used).

The slope parameters can be interpreted in the same way as a binary logistic regression pa-
rameters - except in this case, there are three transitions estimated instead of one transition
- as there would be with a dichotomous dependent variable. A positive parameter indicates
an increased chance that a subject with a higher score on the independent variable will
be observed in a higher category. A negative parameter indicates that the chances that a
subject with a higher score on the independent variable will be observed in a lower category.

The intercepts can be used to calculate predicted probabilities for a person with a given
set of characteristics of being in a particular category.

Example 5.3. To determine the effect of Age and Gender (0= Female, 1=Male) on the
Clinical Stage of HIV/AIDS patients (1= Stage I, 2= Stage II, 3= Stage III and 4=
Stage IV), the following parameter estimates of ordinal logistic regression are obtained.
The loglikelihood values of the null and the full models are -1854.3173 and -1852.1351,
respectively.
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Variable Parameter Estimate Standard Error
Intercept 1 -0.9905 0.1884
Intercept 2 0.5383 0.1870
Intercept 3 2.7246 0.2066
Age 0.0034 0.0055
Gender 0.1789 0.1028

Obtain the cumulative logit model and interpret.

Solution: Let Y= Clinical Stage of patients (1= Stage I, 2= Stage II, 3= Stage III and
4= Stage IV), X1= Age and X2= Gender (0= Female, 1=Male).

Hence, the model has the form logit P̂ (Yi ≤ j|xi) = β̂j0 + β̂1xi1 + β̂2xi2; j = 1, 2, 3. With
J = 4 categories, the model has three cumulative logits. These are:

logit P̂ (Yi ≤ 1|xi) = −0.9905 + 0.0034xi1 + 0.1789xi2

logit P̂ (Yi ≤ 2|xi) = 0.5383 + 0.0034xi1 + 0.1789xi2

logit P̂ (Yi ≤ 3|xi) = 2.7246 + 0.0034xi1 + 0.1789xi2.

The cumulative estimate β̂1 = 0.0034 suggests an increase in the age of the patient leads to
be in higher clinical stages given the gender. Being in smaller ages reduces the likelihood
of being in a higher clinical stage category. Also, the estimate β̂2 = 0.1789 males are more
likely to be in higher clinical stages as compared to females given the age of the patient.
That is, being male increases the likelihood of being in a higher clinical stage category.

5.3.3 Cumulative Response Probabilities

The response probabilities P (Yi = j|xi) of an ordinal logit model is determined as P (Yi =
j|xi) = P (Yi ≤ j|xi) − P (Yi ≤ j − 1|xi) where the cumulative response probabilities
P (Yi ≤ j|xi) are given by

P (Yi ≤ j|xi) =
exp(βj0 + β1xi1 + β2xi2 + · · ·+ βkxik)

1 + exp(βj0 + β1xi1 + β2xi2 + · · ·+ βkxik)
; j = 1, 2, · · · , J − 1.

Hence, an ordinal logit model estimates the cumulative probability of being in one category
versus all lower or higher categories.

Example 5.4. Recall example 5.3. Find the estimated probabilities of each clinical stage
for a female patient at the mean age 34.01 years.

Solution: The estimated probability of response clinical stage j or below is:

P̂ (Yi ≤ j|xi) =
exp(β̂j0 + 0.0034xi1 + 0.1789xi2)

1 + exp(β̂j0 + 0.0034xi1 + 0.1789xi2)
; j = 1, 2, 3.
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The cumulative response probability of a female patient at the age of 34.01 years being in
clinical stage I, clinical stages I or II, clinical stages I, II or III, respectively, are:

P̂ (Yi ≤ 1|xi) =
exp[−0.9905 + 0.0034(34.01) + 0.1789(0)]

1 + exp[−0.9905 + 0.0034(34.01) + 0.1789(0)]

= 0.2942

P̂ (Yi ≤ 2|xi) =
exp[0.5383 + 0.0034(34.01) + 0.1789(0)]

1 + exp[0.5383 + 0.0034(34.01) + 0.1789(0)]

= 0.6579

P̂ (Yi ≤ 3|xi) =
exp[2.7246 + 0.0034(34.01) + 0.1789(0)]

1 + exp[2.7246 + 0.0034(34.01) + 0.1789(0)]

= 0.9448

Note also that P̂ (Yi ≤ 4|xi) = 1. Thus, the actual response probability of a female patient
of 34.01 years old at each clinical stage is calculated as

P̂ (Yi = 1|xi) = P̂ (Yi ≤ 1|xi)
= 0.2942

P̂ (Yi = 2|xi) = P̂ (Yi ≤ 2|xi)− P̂ (Yi = 1|xi)
= 0.6579− 0.2942

= 0.3637

P̂ (Yi = 3|xi) = P̂ (Yi ≤ 3|xi)− P̂ (Yi ≤ 2|xi)
= 0.9448− 0.6579

= 0.2869

P̂ (Yi = 4|xi) = 1− P̂ (Yi = 3|xi)
= 1− 0.9448

= 0.0552

5.3.4 Nonproportional Odds Model

A proportional odds model is one of the preferred ways to account for an ordered response,
because the slope regression parameters are constant over the response categories. While
this can greatly simplify the model, it imposes the assumption that association affects the
logit of cumulative probabilities the same way for all j = 1, 2, · · · , J − 1. This assumption
may not hold in all situations. An alternative model that relaxes this assumption is a
nonproportional (partial proportional) odds model which is written as

logit P (Yi ≤ j|xi) = βj0 + βj1xi1 + βj2xi2 + · · ·+ βjkxik; j = 1, 2, · · · , J − 1.

Notice that all the slope parameters are now allowed to vary across the levels of the ordinal
response.
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Because the proportional odds model is a special case of nonproportional odds model, the
proportional odds assumption can be tested through the hypothesis H0 : β1p = β2p = · · · =
βJ−1,p for p = 1, 2, · · · , k. The test is conducted as a likelihood-ratio test where the degrees
of freedom for the χ2 distribution is the difference in the number of parameters between
the two models, (k + 1)(J − 1) − (p + J − 1) = (J − 2)p. Rejecting the proportional
odds assumption suggests that the nonproportional odds model may be preferred. But
failing to reject the proportional odds hypothesis is not a proof that the assumption holds.
However, it offers some assurance that a proportional odds model provides a reasonable
approximation to true relationships between the ordinal response and the explanatory
variables.

Example 5.5. Recalling example 5.3, the parameter estimates of a nonproportional odds
model, with a loglikelihood value of -1850.1355, are given as follows.

Variable Parameter Estimate Standard Error
Intercept 1 1.0736 0.2376
Intercept 2 -0.5840 0.2062
Intercept 3 -2.6955 0.3851
Age 1 -0.0007 0.0071
Age 2 0.0057 0.0061
Age 3 0.0033 0.0112
Gender 1 0.3509 0.1376
Gender 2 0.0928 0.1144
Gender 3 0.1096 0.2126

Write out the estimated models.

Solution: The model has the usual form logit P̂ (Yi ≤ j|xi) = β̂j0+β̂1xi1+β̂2xi2; j = 1, 2, 3.
Three cumulative logits are

logit P̂ (Yi ≤ 1|xi) = 1.0736− 0.0007xi1 + 0.3509xi2

logit P̂ (Yi ≤ 2|xi) = −0.5840 + 0.0057xi1 + 0.0928xi2

logit P̂ (Yi ≤ 3|xi) = −2.6955 + 0.0033xi1 + 0.1096xi2.
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Chapter 6

Count Regression Models

6.1 Objective and Learning Outcomes

The objective of this chapter is to introduce the basics of poisson regression model which is
a statistical modeling scenario where the responses are counts or frequencies, that is, non-
negative integers. Upon completion of this chapter, students are expected to know when
and how to apply poisson and negative binomial regression models. Count regressions such
as poisson and negative-binomial models are used for modelling count (discrete) response
variables: for example, the number of hospital admissions or the number of accidents over
some period of time. The unit of analysis may be a person (e.g., number of infections per
patient per year), an institution (e.g., number of admissions per hospital per month) or a
place (e.g., number of car accidents per city per day). As a first pass, such a dependent
variable could be analyzed as a continuous outcome. However, unlike a continuous vari-
able, with counts there cannot be negative numbers. Also, the distribution of counts often
tend to be skewed to the right and does not fit a normal distribution.

Count regression models are also used to model incidence rate or incidence of rare diseases.
Incidence rate measures the rate at which a group of people develops a disease or condition.
Often it is of interest to compare incidence rates. For example, is the incidence of diabetes
higher in one city than another or is higher among men than women. As is true of counts,
incidence rates cannot be negative. As a result, in situations such as these, analyzing the
data with a technique such as linear regression is not appropriate.

6.2 The Exponential Function

Count regression models are modeled based on the exponential function. For any real
number z, the exponential function is f(z) = exp(z). This function is nonnegative for all
values of z. That is, if z = −∞, then f(−∞) = 0, if z = 0, then f(0) = 1 and if z = ∞,
then f(∞) =∞.
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Figure 6.1: Plot of the Exponential Function

The figure also shows that the range of f is in between 0 and ∞ for every real number z.
Therefore, 0 ≤ f(z) <∞.

6.3 The Poisson Regression Model

To obtain the poisson regression model from the exponential function, z should be expressed
as a function (mostly linear function) of the explanatory variable(s). That is, zi = g(xi) =
α + βxi for a single explanatory variable X. As a result, the simple poisson regression
model can be written as f(xi) = exp(α + βxi). Here, since f(xi) represents the mean
response, let us use the notation µ(xi). That is, µ(xi) = exp(α+ βxi). This model can be
linearized using the natural logarithm transformation as:

log µ(xi) = α + βxi.

Here α and β are the intercept and slope parameters of the log-linear model. The slope
parameter is commonly interpreted in terms of an incidence rate ratio (IRR). A one unit
increase in xi has a multiplicative impact of exp(β) on the mean response, that is, the
mean of Yi at xi + 1 is the mean of Yi at xi multiplied by exp(β). If β = 0, then the
multiplicative factor is 1, the mean of Yi does not change as xi changes. If β > 0, then
exp(β) > 1 and the mean of Yi increases as xi increases. If β < 0, the mean decreases as
xi increases.

Similarly, if there are k explanatory variables, the multiple poisson regression model is
written as:

log µ(xi) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik =
k∑
j=0

βjxij (6.1)

90

mailto:es.awol@gmail.com


CDA - Stat 3062 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

where xi0 = 1 for all i = 1, 2, · · · , n. Here, µ(xi) is the conditional mean of Yi given xi
where xi = (xi1, xi2, · · · , xik).

The sample poisson regression model is:

log µ̂(xi) = β̂0 + β̂1xi1 + β̂2xi2 + · · ·+ β̂kxik =
k∑
j=0

β̂jxij (6.2)

• µ̂(xi) is the estimated mean response.

• β̂0 is the estimated intercept of the log-linear model.

• β̂j; j = 1, 2, · · · , k is the jth estimated (partial) slope associated with the jth inde-
pendent variable.

Example 6.1. Suppose a study is conducted in identifying factors associated with CD4
counts of 1464 HIV/AIDS patients at the start of HAART treatment. Here the re-
sponse variable is CD4 count of a patient and the explanatory variables were Age in years
(Age), Gender (0=Female, 1=Male) and Functional Status (0=Working, 1=Ambulatory,
2=Bedridden). The parameter estimates and their corresponding standard errors of the
poisson regression model are given in the following table.

Variable Parameter Estimate Standard Error
Intercept 5.4625 0.0079
Age 0.0060 0.0002
Gender -0.1982 0.0041
Ambulatory -0.3783 0.0046
Bedridden -0.6296 0.0123

Obtain the estimated model and interpret the estimates.

Solution: Let Y= CD4 count, X1= Age, X2= Gender (0=Female, 1=Male) and X3=
Functional Status (0=Working, 1=Ambulatory, 2=Bedridden). The estimated model is:

log µ̂(xi) = 5.4625 + 0.0060xi1 − 0.1982xi2 − 0.3783di31 − 0.6296di32.

As the age of the patient increases by one year, the mean CD4 count increases by 0.60%
[exp(0.0060) − 1 = 0.60%]. The mean CD4 count of male patients decreases by 17.98%
[1 − exp(−0.1982) = 17.98%] than female patients. Similarly the mean CD4 counts of
ambulatory and bedridden patients decreases by 31.50% and 46.72% than working patients,
respectively.
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6.3.1 Estimation

Inference on the model and its parameters follows exactly the same approach as used for
logistic regression. Like other regression modeling, the goal of poisson regression is to es-
timate the k + 1 unknown parameters of the model. The method of maximum likelihood
is used to estimate the parameters which follows closely the approach used for logistic
regression.

Consider a random variable Y that can take on a set of count values. Given a dataset with
a sample size of n where each observation is independent. Thus, Y can be considered as
a vector of n poisson random variables. That is, each individual count response Yi; i =
1, 2, · · · , n has an independent poisson distribution with parameter µ(xi), that is,

P (Yi = yi) =
µ(xi)

yi exp[−µ(xi)]

yi!
; yi = 0, 1, 2, · · · .

Then, the joint probability mass function of Y t = (Y1, Y2, · · · , Yn) is the product of the n
poisson distributions. Thus, the likelihood function is:

`(β|y) =
n∏
i=1

µ(xi)
yi exp[−µ(xi)]

yi!
(6.3)

where µ(xi) = exp(
k∑
j=0

βjxij). Also, the log-likelihood function becomes:

L(β|y) =
n∑
i=1

yi log [µ(xi)]−
n∑
i=1

µ(xi)−
n∑
i=1

log (yi!). (6.4)

Then, partially differentiating the log-likelihood with respect to βj; j = 0, 1, 2, · · · , k and
setting it equal to zero results k + 1 equations with k + 1 unknown parameters. That is,

∂L(β|y)

∂βj
=

n∑
i=1

[yi − µ(xi)]xij = 0; j = 0, 1, 2, · · · , k. (6.5)

which is usually solved with some numerical method like the Newton-Raphson algorithm.

Also, the second partial derivative of the log-likelihood function yields the variance-covarince
matrix of the estimated parameters:

∂2L(β|y)

∂βjβh
= −

n∑
i=1

µ(xi)xijxih; j = h = 0, 1, 2, · · · , k. (6.6)
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6.3.2 Significance Tests

Let `M denote the maximized value of the likelihood function for the fitted model M
with all the k explanatory variables. Let `0 denote the maximized value of the likelihood
function for the fitted model with no explanatory variables (having only one parameter,
that is, the intercept). The likelihood-ratio test statistic is G2 = −2(log `0 − log `M) =
D0 −DM ∼ χ2(k). Rejection of the null hypothesis implies at least one of the parameter
is significantly different from zero. Then, Wald test can be used to look at the significance
of each variable (H0 : βj = 0) using a Z statistic in which

Zj =
β̂j

ŜE(β̂j)
∼ N(0, 1)

for large sample size.

Example 6.2. The log-likelihood value of the model given in example 6.1 is -85956.40 and
the corresponding null model is -92061.31. Test the overall significance of the model and
also identify the significant variables using wald test.

Solution: The model is of the form log µ(xi) = β0 + β1xi1 + β2xi2 + β31di31 + β32di32.
For testing the significance of the model, the hypothesis to be tested is H0 : β1 =
β2 = β31 = β32 = 0. Thus, the likelihood-ratio statistic is G2 = −2(log `0 − log `M) =
−2[−92061.31−(−85956.40)] = 12209.82 which is very larger than χ2

0.05(4) = 1.145. There-
fore, at least one of the explanatory variable is significant.

To identify the significant explanatory variables one by one, the Wald statistics are calcu-
lated as shown in the following table.

Variable t Statistic 95% CI for β ÎRR 95% CI for IRR
Intercept 691.46* (5.4470, 5.4780)*
Age 30.00* (0.0056, 0.0064)* 1.0060 (1.0056, 1.0064)*
Gender -48.34* (-0.2062, -0.1902)* 0.8202 (0.8137, 0.8268)*
Ambulatory -82.33* (-0.3877, -0.3697)* 0.6848 (0.6786, 0.6909)*
Bedridden -30.76* (-0.4024, -0.3542)* 0.6850 (0.6687, 0.7017)*

As can be seen, all the three explanatory variables are significantly associated with the
CD4 counts of HIV/AIDS patients.

6.3.3 Model Diagnostics

Just as in any model fitting procedure, analysis of residuals is important in fitting poisson
regression. Residuals can provide guidance concerning the overall adequacy of the model,
assist in verifying assumptions, and can give an indication concerning the appropriateness
of the selected link function.
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The ordinary or raw residuals are just the differences between the observations and the
fitted values, ei = yi−µ(xi), which have limited usefulness. The Pearson residuals are the
standardized differences

ri =
yi − µ(xi)√

µ(xi)
.

These residuals fluctuate around zero, following approximately a normal distribution when
µ(xi) is large. When the model holds, these residuals are less variable than standard nor-
mal, however, because the numerator must use the fitted value µ̂(xi) rather than the true
mean µ(xi). Since the sample data determine the fitted value, [yi − µ̂(xi)] tends to be
smaller than [yi − µ(xi)].

Since, the standardized residual takes [yi− µ̂(xi)] and divides it by its estimated standard
error

√
µ̂(xi), it does have an approximate standard normal distribution when µ(xi) is

large. With standardized residuals, it is easier to tell when a deviation [yi − µ̂(xi)] is
”large”.

Components of the deviance are alternative measures of lack of fit. The deviance residuals
are di = ±

√
yi log [yi/µ̂(xi)]− [yi − µ̂(xi)]; i = 1, 2, · · · , n where the sign is the sign of the

ordinary residual. The deviance residuals approach zero when the observed values of the
response and the fitted values are closer to each other.

6.4 The Negative-Binomial Regression Model

For a poisson distribution, the variance and the mean are equal. Often count data vary
more than the expected. The phenomenon of the data having greater variability than
expected is called over-dispersion. But, over-dispersion is not an issue in ordinary regres-
sion models assuming normally distributed response, because the normal distribution has
a separate parameter to describe the variability.

In the presence of over-dispersion, a negative binomial model is should be applied. Like
a poisson model, a negative binomial model expresses the log mean response in terms of
the explanatory variables. But a negative binomial model has an additional parameter
called a dispersion parameter. That is, because, the negative binomial distribution has
mean E(Y ) = µ and variance Var(Y ) = µ+ψµ2 where ψ > 0. The index ψ is a dispersion
parameter. As ψ approaches 0, V ar(Y ) goes to µ and the negative binomial distribution
converges to the poisson distribution. The farther ψ falls above 0, the greater the over-
dispersion relative to poisson variability.

Example 6.3. Consider example 6.1. The parameter estimates and their corresponding
standard errors of the negative binomial regression are given below.
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Variable Parameter Estimate Standard Error
Intercept 5.4202 0.0867
Age 0.0067 0.0023
Gender -0.1841 0.0443
Ambulatory -0.3743 0.0460
Bedridden -0.6332 0.1066

ψ̂ 0.6022 [CI: (0.5628,0.6443)] 0.0208

The log-likelihood value of this model is -9083.73 and that of the null model is -9135.30.
Compare and contrast the parameter estimates with that of the poisson regression. In
addition, compare both models by finding their corresponding AIC values.

Solution: As the dispersion parameter ψ is significantly larger than 0, it assures that the
negative binomial regression model is more appropriate than the poisson regression model.
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Chapter 7

Loglinear Models for Contingency
Tables

A loglinear model is another modeling method, in addition to a logistic regression model, to
be used for analyzing categorical data. It is useful to describe association patterns among
a set of categorical response variables. The choice of the (logistic regression or loglinear)
models depends on the characteristics of the explanatory variables. If the explanatory
variables are categorical and/or continuous data, the logistic regression model should be
used. If the explanatory variables are categorical data, the loglinear model should be used.
Loglinear models are mostly used when at least two variables in a contingency table are
response variables.

There are three views of loglinear models. The first is to examine the joint frequency
distribution of two or more categorical variables in which results are expressed in terms
of a distribution type that the variables jointly display. The second view is to assess the
possible dependence of among the variables in which results are expressed in terms of con-
ditional probabilities of states of one variables given other variable(s) levels. The last one is
studying association patterns of response variables in which results are expressed in terms
of interactions among variables.

For example, suppose we are interested in relationships among gender (Female, Male),
smoking (Yes, No), tea drinking (Yes, No) and coffee drinking (Yes, No). From the 2×2×
2× 2 contingency table shown in Table 7.1, we can describe 4C2 = 6 two-way associations
(C × T , C ×S, C ×G, T ×S, T ×G, S ×G), 4C3 = 6 three-way associations (C × T ×S,
C × T ×G, T × S ×G, C × S ×G) as well as four main effects. The loglinear model tests
whether each association is significant in the model.

In general, when there are sets of categorical response variables and there is no distinction
between response and explanatory variables, the loglinear model provides a good statis-
tical analysis for testing associations and interactions among sets of categorical response
variables.
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Table 7.1: Cross-Classification of Subjects by Gender, Smoking, Tea and Coffee Drinking

Coffee
Gender Smoking Tea Yes No
Female Yes Yes 15 5

No 30 14
No Yes 17 8

No 14 2
Male Yes Yes 23 6

No 15 11
No Yes 18 7

No 5 1

7.1 Loglinear Models for Two-way Tables

Consider an I×J contingency table that cross-classifies a multinomial sample of n subjects
on two categorical responses, X and Y . The cell probabilities are {P (X = i, Y = j) = πij}
and the observed frequencies are {nij} provided that

I∑
i=1

J∑
j=1

πij = 1 and
I∑
i=1

J∑
j=1

nij = n.

Thus, the expected frequencies are {µij = nπij}. Loglinear model uses {µij} rather than
{πij}, so they can also apply with poisson sampling for N = IJ independent cell counts
{Yij} having {µij = E(Yij)}.

7.1.1 The Independence Model

Under the assumption of statistical independence of two response variables, πij = πi+π+j.
As a result, the expected frequencies are µij = nπi+π+j. Hence, the loglinear model of
independence is:

log µij = log n+ log πi+ + log π+j.

It can be expressed as:
log µij = λ+ λXi + λYj

where λ is the grand mean of the logarithms of the expected cell frequencies or more
specifically,

λ =
1

IJ

I∑
i=1

J∑
j=1

log µij
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where I and J indicate the numbers of categories of X and Y . The parameters λXi and λYj
are the main effects of variable X and Y , respectively, which can be recalculated as

λXi =
1

J

J∑
j=1

log µij − λ

and

λYj =
1

I

I∑
i=1

log µij − λ.

Since the parameters λXi and λYj are expressed interms of differences from the grand mean
λ, the following equation holds:

I∑
i=1

λXi =
J∑
j=1

λYj = 0.

With these constraints, λXi and λYj are coefficients of dummy variables for the first (I − 1)
categories of X and (J − 1) categories of Y , respectively.

Interpretation of Parameters

The model log µij = λ + λXi + λYj does not distinguish between response and explanatory
variables. It treats both jointly as responses, modeling {µij} for combinations of their
levels. To interpret parameters, however, it is helpful to treat variables asymmetrically.

Consider an I × 2 tables. In category i of X, the logit model equals:

logit[P (Y = 1|X = i)] = log

[
P (Y = 1|X = i)

P (Y = 2|X = i)

]
= log

(
µi1/µi+
µi2/µi+

)
= log

(
µi1
µi2

)
This implies,

logit[P (Y = 1|X = i)] = log µi1 − log µi2 = (λ+ λXi + λY1 )− (λ+ λXi + λY2 ) = λX1 − λY2 .

The final term, λX1 −λY2 , does not depend on i, that is, logit[P (Y = 1|X = i)] is identical at
each level of X. That is, in each category of X, the odds of response 1 of Y is exp(λX1 −λY2 ).

An analogous property holds when J > 2. Of course, with a single response variable, logit
models apply directly and loglinear models are not needed.

7.1.2 The Saturated Model

The loglinear model discussed before contains only main effect terms. And it rarely fits.
Therefore, interaction terms often are necessary to obtain estimates for cell frequencies

98

mailto:es.awol@gmail.com


CDA - Stat 3062 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

that are close enough to the observed values.

Models that include all possible main effects and interactions are called saturated models.
For example, the saturated loglinear model for two-way contingency tables is:

log µij = λ+ λXi + λYj + λXYij .

The {λXYij } are association terms that reflect deviations from independence. These repre-
sent interactions between X and Y , where by the effect of one variable on µij depends on
the level of the other. The parameters for interactions can be expressed as differences from
the grand mean.

I∑
i=1

λXYij =
J∑
j=1

λXYij = 0

Thus, λXYij is the coefficient of the product of dummy variables for λXi and λYj . The
independence model results when all λXYij = 0. The saturated model is the most general
model for twoway contingency tables. For it, direct relationships exist between log odds
ratios and {λXYij }. For example, for 2× 2 tables,

log θ = log

[
µ11µ22

µ12µ21

]
= log µ11 + log µ22 − log µ12 − log µ21

=(λ+ λX1 + λY1 + λXY11 ) + (λ+ λX2 + λY2 + λXY22 )

− (λ+ λX1 + λY2 + λXY12 )− (λ+ λX2 + λY1 + λXY21 )

=λXY11 + λXY22 − λXY12 − λXY21

Thus, {λXYij } determine the association.

In practice, unsaturated models are preferable, since their fit smooths the sample data and
has simpler interpretations. For tables with at least three variables, unsaturated models
can include association terms. Then, loglinear models are more commonly used to describe
associations (through two-factor terms) than to describe odds (through single-factor terms).

7.2 Loglinear Models for Three-way Tables

Loglinear models for three-way tables describe their independence and association patterns.
A three-way I × J ×K cross-classification of response variables X, Y and Z has several
potential types of independence. The cell probabilities are {P (X = i, Y = j, Z = k) =
πijk} and the observed frequencies are {nijk} provided that

I∑
i=1

J∑
j=1

K∑
k=1

πijk = 1 and
I∑
i=1

J∑
j=1

K∑
k=1

nijk = n.
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Thus, the expected frequencies are {µijk = nπijk}. Hence, the model also applies to poisson
sampling with means {µijk}.

The general loglinear model for a three-way table is

log µijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk + λXY Zijk

where λ is the grand mean of the logarithm of the expected cell frequencies,

λ =
1

IJK

I∑
i=1

J∑
j=1

K∑
k=1

log µijk

The main effect parameters λXi , λYj and λZk can be recalculated as λXi =
1

JK

J∑
j=1

K∑
k=1

log µijk−

λ, λYj =
1

IK

I∑
i=1

K∑
k=1

log µijk − λ and λZk =
1

IJ

I∑
i=1

J∑
j=1

log µijk − λ.

Since the parameters λXi , λYj and λZk are expressed interms of differences from the grand
mean λ, the following equation holds.

I∑
i=1

λXi =
J∑
j=1

λYj =
K∑
k=1

λZk = 0.

Similarly, the two-way interaction parameters λXYij , λXZik and λY Zjk are calculated as: λXYij =

1

K

K∑
k=1

log µijk − λ, λXZik =
1

J

J∑
j=1

log µijk − λ and λY Zjk =
1

I

I∑
i=1

log µijk − λ.

As a result,

I∑
i=1

λXYij =
J∑
j=1

λXYij =
I∑
i=1

λXZik =
K∑
k=1

λXZik =
J∑
j=1

λY Zjk =
K∑
k=1

λY Zjk = 0.

Also, for the three-way interaction,

I∑
i=1

λXY Zijk =
J∑
j=1

λXY Zijk =
K∑
k=1

λXY Zijk = 0.

With dummy variables, λXY Zijk is the coefficient of the product of the ith dummy variable

for X, jth dummy variable for Y , and kth dummy variable for Z.

The above model includes all possible main effects and interactions which is a saturated
model for three-way tables. Saturated models exactly reproduce the observed frequency
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distribution. There is no degree of freedom left. There is really no business in statistically
testing the fit of a saturated model because it does not provide any reduction of data.
Saturated models are, however, often used to generate hints as to what parameters might
be strong. These hints give only first insights that may have to be revised. Parameter
estimates often are correlated and depend partly on the presence or absence of other pa-
rameters in the equation.

In general, for d > 1 variables in a cross-classification, there are dC1 = d main effects,
dC2 = 1

2
d(d − 1) two-way interaction terms, · · · , dCd = 1 d-way interaction terms in the

saturated model.

7.2.1 Types of Independence

Setting certain parameters equal to zero in the general loglinear model yields different
models to be introduced next.

• The three variables are mutually independent when πijk = πi++π+j+π++k for all i, j
and k. Mutual independence has loglinear form

log µijk = λ+ λXi + λYj + λZk .

• Variable Y is jointly independent of X and Z when πijk = πi+kπ+j+ for all i, j and
k. This is ordinary two-way independence between Y and a variable composed of the
IK combinations of levels of X and Z. The loglinear model is

log µijk = λ+ λXi + λYj + λZk + λXZik .

Similarly, X could be jointly independent of Y and Z, or Z could be jointly inde-
pendent of X and Y . Mutual independence implies joint independence of any one
variable from the others.

• Variables X and Y are conditionally independent given Z when πij|k = πi+|kπ+j|k or
πijk = πi+kπ+jk/π++k for all i, j and k. Conditional independence of X and Y , given
Z, is the loglinear model is

log µijk = λ+ λXi + λYj + λZk + λXZik + λY Zjk .

This is a weaker condition than mutual or joint independence. Mutual independence
implies that Y is jointly independent of X and Z, which itself implies that X and Y
are conditionally independent.

A model that permits all three pairs to be conditional dependent is

log µijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk .

101

mailto:es.awol@gmail.com


CDA - Stat 3062 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

For this model, the conditional odds ratios between any two variables are identical at each
category of the third variable which is shown in the next section. That is, each pair has a
homogenous association and the model is called the loglinear model of homogenous asso-
ciation or of no three factor interaction.

To ease referring to the above models discussed, the following table assigns to each model
a symbol that lists the highest-order terms for each variable. For instance, the model of
conditional independence between X and Y has symbol (XY, Y Z), since its highest-order
terms are λXZik and λY Zjk .

Table 7.2: Loglinear Models for Three-Way Contingency Tables

Loglinear Model Symbol
log µijk = λ+ λXi + λYj + λZk (X, Y, Z)
log µijk = λ+ λXi + λYj + λZk + λXYij (XY,Z)
log µijk = λ+ λXi + λYj + λZk + λXYij + λY Zjk (XY, Y Z)
log µijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk (XY, Y Z,XZ)
log µijk = λ+ λXi + λYj + λZk + λXYij + λXZik + λY Zjk + λXY Zijk (XY Z)

7.2.2 The Hierarchical Model

Hierarchical models are models which include all lower-order terms composed from vari-
ables contained in a higher-order model term. The models in Table 7.2 are all hierarchical.
When the model contains λXYij , it also contains λXi and λYj .

A reason for including lower-order terms is that, otherwise, the statistical significance and
the interpretation of a higher-order term depends on how variables are coded. This is
undesirable, and with hierarchical models the same results occur no matter how variables
are coded. For example, the model log µij = λ + λXi + λXYij , it is not hierarchical. It
permits association but forces unnatural behavior of expected frequencies, with the pattern
depending on constraints used for parameters.

7.2.3 Interpreting Model Parameters

Interpretations of loglinear model parameters use their highest-order terms. For instance,
interpretations for the loglinear model of homogenous associations use the two-factor terms
to describe conditional odds ratios. At a fixed level k of Z, the conditional association
between X and Y uses (I − 1)(J − 1) odds ratios, such as the local odds ratios

θij(k) =
πijkπi+1,j+1,k

πi,j+1,kπi+1,j,k

, i = 1, 2, · · · , I − 1, j = 1, 2, · · · , J − 1.
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Similarly, (I − 1)(J − 1) odds ratios {θi(j)k} describe XZ conditional association, and
(J − 1)(K − 1) odds ratios {θ(i)jk} describe Y Z conditional association. Loglinear models
have characterizations using constraints on conditional odds ratios. For instance, condi-
tional independence of X and Y is equivalent to {θij(k) = 1, i = 1, 2, · · · , I − 1, j =
1, 2, · · · , J − 1, k = 1, 2, · · · , K}.

The two-factor parameters relate directly to the conditional odds ratios. Thus, log θij(k)

yields

log θij(k) = log

(
µijkµi+1,j+1,k

µi+1,j,kµ1,j+1,k

)
= λXYij + λXYi+1,j+1 − λXYi,j+1 − λXYi+1,j.

Since the right-hand side is the same for all k, an absence of three-factor interaction is
equivalent to

θij(1) = θij(2) = · · · = θij(K) for all i and j.

The same argument for the other conditional odds ratios shows that model (XY,XZ, Y Z)
is also equivalent to

θi(1)k = θi(2)k = · · · = θi(J)k for all i and k

and to
θ(1)jk = θ(2)jk = · · · = θ(I)jk for all j and k.

Any model not having the three-factor interaction term has a homogeneous association for
each pair of variables.

The λXY Zijk term in the general model refers to three-factor interaction. It describes how
the odds ratio between two variables changes across categories of the third. Consider a
2× 2× 2 tables. By direct substitution of the general model formula,

log

(
θ11(1)

θ11(2)

)
= log

[
(µ111µ221)/(µ121µ211)

(µ112µ222)/(µ122µ212)

]
=(λXY Z111 + λXY Z221 − λXY Z121 − λXY Z211 )− (λXY Z112 + λXY Z222 − λXY Z122 − λXY Z212 )

For constraints setting the second-category parameters equal to 0, this log ratio of odds
ratios equals λXY Z111 . When λXY Z111 = 0, θ11(1) = θ11(2), giving homogeneous XY association.

7.3 Fitting Loglinear Models

When fitting loglinear models, the first goal is to find a model that describes the cross-
classified data such that there are, statistically, only random discrepancies between the
observed and expected frequencies. Another goal is to get more parsimonious models than
the saturated model which does not provide any data reduction and has no more use the
raw data them selves. Parsimonious models contain as few parameters as possible and
interactions of the lowest possible order.
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7.3.1 Specification and Estimation

The maximum number of independent parameters for the interaction between two vari-
ables, say X with I categories and Y with J categories, is (I − 1)(J − 1). The maximum
number of independent parameters for the interaction between three variables, say X with
I categories, Y with J categories and Z with K categories, is (I − 1)(J − 1)(K − 1), and
so forth.

Using the design matrices, the general loglinear model can be formulated in a fashion anal-
ogous to the general linear model, logµ = Xβ where µ is the vector of the expected cell
frequencies, X is the design matrix that contains one vector per main effect or interaction
parameter and β is a vector of parameters.

Consider the cross-classification by three dichotomous variables: Gender (G), Coffee Drink-
ing (C) and Smoking (S). Table 7.3 contains the design matrix for the G × C × S cross-
classification. This table contains four blocks of vectors. The first block contains the

Table 7.3: Design Matrix for 2× 2× 2 Cross-Classification (Effect Coding)

Vectors in Design Matrix
Main Effects Two-Way Interactions Three-Way Interaction

µijk Constant G C S G× C G× S C × S G× C × S
µ111 1 1 1 1 1 1 1 1
µ112 1 1 1 -1 1 -1 -1 -1
µ121 1 1 -1 1 -1 1 -1 -1
µ122 1 1 -1 -1 -1 -1 1 1
µ211 1 -1 1 1 -1 -1 1 -1
µ212 1 -1 1 -1 -1 1 -1 1
µ221 1 -1 -1 1 1 -1 -1 1
µ222 1 -1 -1 -1 1 1 1 -1

constant vector. In the general linear model, a constant vector of ones has the effect that
the intercept parameter estimate is equal to the arithmetic mean of the response variable.
In the general loglinear model, this constant vector yields, for parameter λ, the arithmetic
mean of the logarithms of the expected cell frequencies.

The second block contains the vectors for the main effects of the variables: G, C and S.
Here, effect coding is used to generate the vectors for variable main effects. Alternatives
include dummy coding which are equivalent in the sense that they allow one to test exactly
the same hypothesis. For didactical purposes, however, the effect coding is preferred which
makes it easier to identify group of contrasted cells.
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The third block of the table contains the vectors for the two-way interactions. Just as with
effect coding in the general linear model, these vectors result from element-wise multipli-
cation of main effect vectors of the interacting variables.

The fourth block of coding vectors contains the effect of coding vector for the three-way
interaction of the variables: G, C and S.

Interpretation of the vectors proceeds as follows. Interactions modify main effects under
consideration of categories of other variables. For instance, the first interaction vector in
the block of two-way interaction vectors in Table 7.3 describes the interaction between
variables G and C. The main effect of variable C contrasts states 1 and 2. The levels of
variable G are not considered. In other words, it is assumed that this contrast is the same
across the two levels of variable E. The interaction term G × C repeats the main effect
statement for C only for the first category of G, that is, in the upper half of the vector. In
the lower half, this contrast takes the opposite direction.

The G×S and C×S interactions can be interpreted in an analogous fashion. Accordingly,
the G × C × S interaction is a modification of the G × C interaction that considers the
categories of variable S. Or it can be seen as a modification of G× S under consideration
of C, or, as a modification of C × S under consideration of G.

One the models to be estimated are specified, then the method of maximum likelihood
estimation technique can be used. The estimation process for loglinear models involves
two steps. The first step is the calculation of estimates for the values of the λ parameters.
The second step is the calculation of estimated expected frequencies using the λ parameter
estimates.

7.3.2 Statistical Significance Tests

In explanatory research, theories allow to derive models that reflect propositions of these
theories. These propositions are then translated into patterns of variable relationships and
tested using loglinear models that include these patterns. In many instances, theories allow
to derive more than one plausible model. Differences between these models may concern
parsimony and type of association pattern, discrepancy pattern or sampling distribution.
There are many ways to compare competing models. If competing models operate at dif-
ferent hierarchical levels, differences between these models can be statistically tested.

Significance tests in loglinear models are used to determine whether the model fits, whether
the parameters are statistically significant, and whether there is a difference between the
observed and expected frequency of each cell (that is, residual analysis).

• Goodness-of-fit Tests: The goodness-of-fit test of a model determines whether a

105

mailto:es.awol@gmail.com


CDA - Stat 3062 c© 2017 By: Awol S., E-mail: es.awol@gmail.com

model adequately describes the observed frequency distribution. For this purpose,
there are two commonly used tests; the likelihood ratio (G2) test and the Pearson
chi-square (G2) test. They are described, respectively,

G2 =
I∑
i=1

J∑
j=1

K∑
k=1

nijk log

(
nijk
µ̂ijk

)
and χ2 =

I∑
i=1

J∑
j=1

K∑
k=1

(nijk − µ̂ijk)2

µ̂ijk
.

Both of these tests provide good χ2 approximations and are asymptotically equiva-
lent. The question is how to estimate the degrees of freedom in the design matrix
approach to loglinear modeling. In fact, it is simple. Let t be the number of cells
in the cross-classification and let v be the number of columns in the design matrix,
including the constant vector, with v ≤ t. Then, the degrees of freedom for a given
model is calculated as df = t− v.

If the values of G2 and χ2 are smaller than the critical value, then it indicates that
the model adequately fits. But, it should be noted that, unlike many applications
of general linear model, in the applications of loglinear models the emphasis is on
both the overall model fit and significance of effect parameters. Whereas regression
parameter estimates typically are interpreted when they are statistically significant,
regardless of model fit, loglinear model parameter estimates are interpreted only if
the model provides acceptable fit.

• Significance of Parameters: If the model adequately fits, next statistically signif-
icant parameters of the target model are to be interpreted. For each vector in the
design matrix, the parameter λ is estimated as λ̂ with an estimated standard error
ŜE(λ̂). Then, the value of test statistic

z =
λ̂

ŜE(λ̂)

can be compared with the critical value of a standard normal distribution. The
parameter is significant if the value of |z| is greater than the critical value.

• Residual Analysis: The third component of statistical significance testing in log-
linear modeling involves residual analysis. The raw residuals are (nijk − µ̂ijk). More
frequently, standardized residuals defined as

nijk − µ̂ijk√
µ̂ijk

are used. If the model fits, each standardized residual is approximately normally
distributed with mean 0 and variance 1.
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In general, the loglinear model fitting process involves four steps: specifications of models
to be tested, estimation of the models, significance tests and finally interpretation of results.
Interpretation of results reflects the goal of the analysis. If it is a goal to fit a model, the
overall goodness of fit results for all fitting models are evaluated with respect to substantive
assumptions and such desiderates as parsimony. If special hypotheses are tested, the
parameters for these hypothesis, their meaning and statistical significance are important.

Example 7.1. A sample of n = 516 adults are cross-classified according to three variables:
Marital Status (M ; 1=Married, 2=Single), Gender (G; 1=Male, 2=Female), and Size
of Social Network (S; 1=Small Social Network, 2=Large Social Network). The cross-
classification provides a 2 × 2 × 2 table. We will analyze this data under the assumption
that Marital Status and Gender interact such that older women are less likely to be married
than older men, and that large networks are more likely among married people.

Table 7.4: Cross-Classification of Subjects by Marital Status, Gender and Size of Social
Network

Social Network (S)
Marital Status (M) Gender (G) Small (1) Large (2)
Married (1) Male (1) 48 87

Female (2) 5 14
Single (2) Male (1) 78 45

Female (2) 130 109

The goal is to find a fitting and parsimonious model that reflect our assumptions. To
achieve this, the four steps of fitting and testing in loglinear modeling are to be followed.

• Step 1: Specification of the Loglinear Models. The current analysis is explana-
tory in the sense that we have explicit assumptions. These assumptions are explicit
enough so that they can be rejected by data. Specifically, the assumptions that older
women are less frequently married than older men, and that larger networks are more
frequent that smaller networks among married people fail to be confirmed. To test
these assumptions, the following models are specified.

1. The null model postulates that variables do not interact. That is, the main
effects are sufficient to explain the frequency distribution. The null model is
tested for two reasons. First, by fitting the null model, we have a model at a
relatively low hierarchy level that can be used for comparisons with the finally
accepted model. It is one of the requirement that the finally accepted model
not only fit by itself, but that it also be statistically significantly better than the
null model. Second, if the null model provides such a good fit that statistically
significant improvements are not possible, then there is no need to test more
complex, less parsimonious models.
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2. The target model is the model that is closest to our assumptions. It provides
vectors in the design matrix for each of the main effects and interactions in-
volved. Table 7.5 contains the design matrices for both the null and the target
model.

The first two columns of Table 7.5 contain the configuration indexes and the observed
frequencies. Column 3, 4 and 5 contain vectors for the main effects of variable M , G
and S. The elements of the interaction vector result from element-wise multiplication
of the first and the second vectors of the design matrix. The last vector is the
translation of the assumption that among married people, large networks are more
likely than small networks. This vector contrasts two groups of individuals, both
composed of married people. The first group involved in the contrast, marked by
-1, involves men and women with small networks. The second group, marked by 1,
involves men and women with large networks. The single members of this sample
are not involved in this contrast and are in cells marked by 0’s. Table 7.5 contains

Table 7.5: Design Matrices for M ×G× S Cross-Classification in Table 7.4

Design Matrix Vectors
Main Effects Interaction

Configuration (MGS) nijk M G S M ×G Special Contrast

111 48 1 1 1 1 -1
112 87 1 1 -1 1 1
121 5 1 -1 1 -1 -1
122 14 1 -1 -1 -1 1
211 78 -1 1 1 -1 0
212 45 -1 1 -1 -1 0
221 130 -1 -1 1 1 0
222 109 -1 -1 -1 1 0

the vectors necessary for testing both the null model and the target model. The only
exception is the constant vector of 1’s, which is implied. The first three vectors are
the only ones needed for the null model. All the five vectors are needed for the target
model.

• Step 2: Estimation of the Null and Target Models. As discussed before, esti-
mation of loglinear models involves two main steps. The first step involves parameter
estimation while the second step involves estimation of expected cell frequencies and
residuals.

Table 7.6 and Table 7.7 present results from the first and second step for both models,
respectively.
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Table 7.6: Parameter Estimates for the Null Model and Target Model Specified in Table 7.5

Null Model Target Model

Parameter λ̂ ŜE(λ̂) z λ̂ ŜE(λ̂) z
Main Effect M -0.43 0.05 -8.60* -0.63 0.07 -9.00*
Main Effect G 0.00 0.04 0.00 0.32 0.07 4.57*
Main Effect S 0.01 0.04 0.25 0.15 0.05 3.00*
Interaction M ×G - - - 0.66 0.07 9.43*
Special Contrast - - - 0.47 0.10 4.70*

*statistically significantly different from 0.

Table 7.7: Expected Frequencies and Standardized Residuals from the Null and Target
Models for Data in Table 7.4

Null Model Target Model
(MGS) nijk µ̂ Standardized Residual µ̂ Standardized Residual

111 48 38.95 1.45 46.46 0.23
112 87 38.05 7.94* 88.54 -0.16
121 5 38.05 -5.44* 6.54 -0.60
122 14 38.05 -3.90* 12.46 0.44
211 78 91.55 -1.42 70.67 0.87
212 45 89.45 -4.70* 52.33 -1.01
221 130 91.55 4.02* 137.33 -0.63
222 109 89.45 2.07* 101.67 0.73

*indicates statistically significant deviation of residual from zero.

• Step 3: Significance Tests.

– Goodness-of-fit Tests: To evaluate the overall model fit, the likelihood ratio
test G2 and the Pearson chi-square test χ2 are used. That is,

G2 =
2∑
i=1

2∑
j=1

2∑
k=1

nijk log

(
nijk
µ̂ijk

)
and χ2 =

2∑
i=1

2∑
j=1

2∑
k=1

(nijk − µ̂)2

µ̂ijk
.

As a result, for the null model, G2 = 162.864 and χ2 = 154.372, and the critical
value is χ2

0.05(8 − 4) = χ2
0.05(4) = 9.4877. This implies, the deviations of the

observed frequencies from the expected frequencies are not random and thus re-
ject the null model. Therefore, the three parameters for the null model cannot
be interpreted.
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For the target model, G2 = 3.380 and χ2 = 3.334, and the critical value is
χ2

0.05(8 − 6) = χ2
0.05(2) = 5.991. Hence, the model that involves three main

effect parameters, one interaction and one special contrast fits very well. In
other words, the target model provides a very good rendering of the observed
frequency distribution.

The parameters estimated for the two loglinear models, their standard errors,
and their z statistics are appear in Table 7.6. Before looking at the significant
of parameters in the target model, it must be checked whether the target model
shows a significant improvement over the null model. The difference in the
likelihood ratio is ∆G2 = 162.864 − 3.380 = 159.484 and the difference in the
degrees of freedom is ∆df = 4 − 2 = 2. The ∆G2 is statistically significant
and we can conclude that the target model not only fits but also provides a
significant improvement over the null model.

– Significance of Parameters: Now, we can move to significance tests concern-
ing the parameter estimates. As can be seen from Table 7.6, only the main
effect M parameter for the null model and all the five parameters of the target
model are statistically significant.

– Significance of Residuals: The null model in Table 7.7 suggests that six out
of eight estimated expected frequencies deviate significantly from the observed
frequency. This is another indicator implying poor fit of the main effects model.
The target model in the same table suggests none of the standardized residuals
is significant. Thus, the target model fits very well even at the level of residuals.

• Step 4: Interpretation of Results. Estimating the three main effect parameters
first makes sure that the marginal totals are reproduced. These marginal totals are
Married = 154, Single = 362, Male = 258, Female = 258, Small Networks = 261
and Large Networks = 255. Parameter interpretation must always consider the other
variables in the equation. The interaction suggests that the ratio of married men to
married women is not the same as the ratio of single men to single women in the
population under study. The special contrast indicates that, among married people,
large networks are more likely than small networks, considering that these two state-
ments account for statistically significant portions of the variation in the frequency
table.

Note, however, the main effect M parameter for the null model is significant, but its
estimate cannot be interpreted because the model does not fit.
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